Current rehabilitation efforts for individuals poststroke focus on increasing walking speed because it is a predictor of community ambulation and participation. Greater propulsive force is required to increase walking speed. Previous studies have identified that trailing limb angle (TLA) and ankle moment are key factors to increases in propulsive force during gait. However, no studies have determined the relative contribution of these two factors to increase propulsive force following intervention. The purpose of this study was to quantify the relative contribution of ankle moment and TLA to increases in propulsive force following 12-weeks of gait training for individuals poststroke. Forty-five participants were assigned to 1 of 3 training groups: training at self-selected speeds (SS), at fastest comfortable speeds (Fast), and Fast with functional electrical stimulation (FastFES). For participants who gained paretic propulsive force following training, a biomechanical-based model previously developed for individuals poststroke was used to calculate the relative contributions of ankle moment and TLA. A two-way, mixed-model design, analysis of covariance adjusted for baseline walking speed was performed to analyze changes in TLA and ankle moment across groups. The model showed that TLA was the major contributor to increases in propulsive force following training. Although the paretic TLA increased from pre-training to post-training, no differences were observed between groups. In contrast, increases in paretic ankle moment were observed only in the FastFES group. Our findings suggested that specific targeting may be needed to increase ankle moment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761516PMC
http://dx.doi.org/10.1016/j.jbiomech.2015.12.040DOI Listing

Publication Analysis

Top Keywords

propulsive force
28
ankle moment
24
individuals poststroke
16
walking speed
12
increases propulsive
12
force 12-weeks
8
12-weeks gait
8
gait training
8
training individuals
8
tla ankle
8

Similar Publications

The Voyager 2 flyby of Uranus in 1986 revealed an unusually oblique and off-centred magnetic field. This single in situ measurement has been the basis of our interpretation of Uranus's magnetosphere as the canonical extreme magnetosphere of the solar system; with inexplicably intense electron radiation belts and a severely plasma-depleted magnetosphere. However, the role of external forcing by the solar wind has rarely been considered in explaining these observations.

View Article and Find Full Text PDF

Towards a standard application of the Reynolds number in studies of aquatic animal locomotion.

J Exp Biol

January 2025

Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC 29528, USA.

Nondimensional groups of measured quantities enable comparison between measurements of animals under different conditions and comparison between species. One of the most used such group is the Reynolds number, which compares inertial and viscous contributions to forces on swimming animals. This group includes two quantities that are chosen by the researcher: a typical length and speed.

View Article and Find Full Text PDF

Arm Propulsion in Front Crawl Stroke.

Sports (Basel)

January 2025

Department for Life Quality Studies, University of Bologna, 40100 Bologna, Italy.

: This study aims to determine the propulsive force and effective arm area contributed by the propulsion through the dynamic balance (power balance) between drag and propulsive power in swimming crawl performance. : Ten male swimmers participated in the study. The athletes conducted the crawl trials at a constant velocity using only the upper limbs.

View Article and Find Full Text PDF

This study evaluated the concurrent validity of the Vitruve linear encoder compared to the T-Force device for measuring mean propulsive velocity (MPV) and peak velocity (PV) during the free-weight bench press exercise. Thirteen resistance-trained men participated in three sessions, during which MPV and PV were recorded simultaneously by both devices. The data were analysed using one-way ANOVA, Pearson's correlation, Bland-Altman analysis, and effect size calculations, with statistical significance set at ≤ 0.

View Article and Find Full Text PDF

The tempo of resistance exercises is known to influence performance outcomes, yet its specific effects on post-activation performance enhancement (PAPE) remain unclear. This study aimed to investigate the effects of fast versus slow repetitions at a load of 70% of one-repetition maximum (1-RM) in the bench press exercise, focusing on velocity, surface electromyographic (sEMG) activity, and applied force while equating time under tension on bench press throw performance. Eleven men (age: 23.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!