Relationship between efficiency of nitrogen utilization and isotopic nitrogen fractionation in dairy cows: contribution of digestion v. metabolism?

Animal

1Institut National de la Recherche Agronomique,UMR 1213 INRA-VetAgro Sup,Unité Mixte de Recherches sur les Herbivores,63122 St Genès Champanelle,France.

Published: February 2016

Animal tissues are naturally 15N enriched relative to their diet and the extent of this difference (Δ15Nanimal-diet) has been correlated to the efficiency of N assimilation in different species. The rationale is that transamination and deamination enzymes, involved in amino acid metabolism are likely to preferentially convert amino groups containing 14N over 15N. However, in ruminants the contribution of rumen bacterial metabolism relative to animal tissues metabolism to naturally enrich animal proteins in terms of 15N has been not assessed yet. The objective of this study was to assess the impact of rumen and digestion processes on the relationship between Δ15Nanimal-diet and efficiency of N utilization for milk protein yield (milk N efficiency (MNE); milk N yield/N intake) as well as the relationship between the 15N natural abundance of rumen bacteria and the efficiency of N use at the rumen level. Solid- and liquid-associated rumen bacteria, duodenal digesta, feces and plasma proteins were obtained (n=16) from four lactating Holstein cows fed four different diets formulated at two metabolizable protein supplies (80% v. 110% of protein requirements) crossed by two different dietary energy source (diets rich in starch v. fiber). We measured the isotopic N fractionation between animal and diet (Δ15Nanimal-diet) in these different body pools. The Δ15Nanimal-diet was negatively correlated with MNE when measured in solid-associated rumen bacteria, duodenal digesta, feces and plasma proteins, with the strongest correlation found for the latter. However, our results showed a very weak 15N enrichment of duodenal digesta (Δ15Nduodenal digesta-diet mean value=0.42) compared with that observed in plasma proteins (Δ15Nplasma protein-diet mean value=2.41). These data support the idea that most of the isotopic N fractionation observed in ruminant proteins (Δ15Nplasma protein-diet) has a metabolic origin with very little direct impact of the overall digestion process on the existing relationship between Δ15Nplasma protein-diet and MNE. The 15N natural abundance of rumen bacteria was not related to either rumen N efficiency (microbial N/available N) or digestive N efficiency (metabolizable protein supply/CP intake), but showing a modest positive correlation with rumen ammonia concentration. When using diets not exceeding recommended protein levels, the contribution of rumen bacteria and digestion to the isotopic N fractionation between animal proteins and diet is low. In our conditions, most of the isotopic N fractionation (Δ15Nplasma protein-diet) could have a metabolic origin, but more studies are warranted to confirm this point with different diets and approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1751731115002025DOI Listing

Publication Analysis

Top Keywords

rumen bacteria
20
isotopic fractionation
16
Δ15nplasma protein-diet
16
duodenal digesta
12
plasma proteins
12
rumen
10
animal tissues
8
contribution rumen
8
animal proteins
8
15n natural
8

Similar Publications

Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.

View Article and Find Full Text PDF

Macroalgae Compound Characterizations and Their Effect on the Ruminal Microbiome in Supplemented Lambs.

Vet Sci

December 2024

Facultad de Agronomía y Veterinaria, Centro de Biociencias, Instituto de Investigaciones en Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78321, Mexico.

The impact of macroalgae species on rumen function remains largely unexplored. This present study aimed to identify the biocompounds of the three types of marine macroalgae described: (Brown), spp. (Lettuce), spp.

View Article and Find Full Text PDF

Feed additives for methane mitigation: A guideline to uncover the mode of action of antimethanogenic feed additives for ruminants.

J Dairy Sci

January 2025

Instituto de Investigaciones Agropecuarias - Centro Regional de Investigación Carillanca, 4880000 Vilcún, La Araucanía, Chile. Electronic address:

This publication aims to provide guidelines of the knowledge required and the potential research to be conducted in order to understand the mode of action of antimethanogenic feed additives (AMFA). In the first part of the paper, we classify AMFA into 4 categories according to their mode of action: (1) lowering dihydrogen (H) production; (2) inhibiting methanogens; (3) promoting alternative H-incorporating pathways; and (4) oxidizing methane (CH). The second part of the paper presents questions that guide the research to identify the mode of action of an AMFA on the rumen CH production from 5 different perspectives: (1) microbiology; (2) cell and molecular biochemistry; (3) microbial ecology; (4) animal metabolism; and (5) cross-cutting aspects.

View Article and Find Full Text PDF

Despite the increasing interest in developing antimethanogenic additives to reduce enteric methane (CH) emissions and the extensive research conducted over the last decades, the global livestock industry has a very limited number of antimethanogenic feed additives (AMFA) available that can deliver substantial reduction, and they have generally not reached the market yet. This work provides technical recommendations and guidelines for conducting tests intended to screen the potential to reduce, directly or indirectly, enteric CH of compounds before they can be further assessed in in vivo conditions. The steps involved in this work cover the discovery, isolation, and identification of compounds capable of affecting CH production by rumen microbes, followed by in vitro laboratory testing of potential candidates.

View Article and Find Full Text PDF

This study aimed to reveal the effect of traditional Chinese herbal medicine residues (TCHMR) on growth performance, hematology, ruminal microbiota, and economic benefits of Guizhou black male goats through the fermented total mixed ration (FTMR) diet technique. A total of 22 Guizhou black male goats with an initial weight of 21.77 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!