The histone methylation on lysine residues is one of the most studied post-translational modifications, and its aberrant states have been associated with many human diseases. In 2012, Kruidenier et al. reported GSK-J1 as a selective Jumonji H3K27 demethylase (JMJD3 and UTX) inhibitor. However, there is limited information on the structure-activity relationship of this series of compounds. Moreover, there are few scaffolds reported as chelating groups for Fe(II) ion in Jumonji demethylase inhibitors development. To further elaborate the structure-activity relationship of selective JMJD3 inhibitors and to explore the novel chelating groups for Fe(II) ion, we initialized a medicinal chemistry modification based on the GSK-J1 structure. Finally, we found that several compounds bearing different chelating groups showed similar activities with respect to GSK-J1 and excellent metabolic stability in liver microsomes. The ethyl ester prodrugs of these inhibitors also showed a better activity than GSK-J4 for inhibition of TNF-α production in LPS-stimulated murine macrophage cell line Raw 264.7 cells. Taking together, the current study not only discovered alternative potent JMJD3 inhibitors, but also can benefit other researchers to design new series of Jumonji demethylase inhibitors based on the identified chelating groups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2016.01.006 | DOI Listing |
Bioorg Chem
January 2025
Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:
Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Zoology, College of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.
Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.
Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.
Nutrients
January 2025
Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Talca 3460000, Chile.
Unlabelled: Dental caries remains a prevalent chronic disease driven by dysbiosis in the oral biofilm, with playing a central role in its pathogenesis.
Objective: This study aimed to assess the effect of D-tagatose on cariogenic risk by analyzing randomized clinical trials (RCTs).
Methods: A systematic literature review was conducted targeting RCTs published up to 2024 in eight databases and two gray literature sources.
Molecules
January 2025
Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 760001, Colombia.
Scaffolds for regenerative therapy can be made from natural or synthetic polymers, each offering distinct benefits. Natural biopolymers like chitosan (CS) are biocompatible and biodegradable, supporting cell interactions, but lack mechanical strength. Synthetic polymers like polyvinyl alcohol (PVA) provide superior mechanical strength and cost efficiency but are not biodegradable or supportive of cell adhesion.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Thalassemia Unit, Hatay Education and Research Hospital, Hatay 31027, Turkey.
This study aimed to identify asymptomatic brain lesions in patients with β-thalassemia major (TM) and sickle cell anemia (SCA) and evaluate the correlation of these lesions with factors such as splenectomy, thrombocytosis, and blood transfusions. A total of 26 patients with thalassemia major and 23 patients with sickle cell anemia were included. Ischemic lesions were categorized as lacunar, small vessel, or multifocal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!