Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Online social media microblogs may be a valuable resource for timely identification of critical ad hoc health-related incidents or serious epidemic outbreaks. In this paper, we explore emotion classification of Twitter microblogs related to localized public health threats, and study whether the public mood can be effectively utilized in early discovery or alarming of such events. We analyse user tweets around recent incidents of Ebola, finding differences in the expression of emotions in tweets posted prior to and after the incidents have emerged. We also analyse differences in the nature of the tweets in the immediately affected area as compared to areas remote to the events. The results of this analysis suggest that emotions in social media microblogging data (from Twitter in particular) may be utilized effectively as a source of evidence for disease outbreak detection and monitoring.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!