A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

INFERENCE OF PERSONALIZED DRUG TARGETS VIA NETWORK PROPAGATION. | LitMetric

INFERENCE OF PERSONALIZED DRUG TARGETS VIA NETWORK PROPAGATION.

Pac Symp Biocomput

School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel†These authors contributed equally to this work.,

Published: October 2016

We present a computational strategy to simulate drug treatment in a personalized setting. The method is based on integrating patient mutation and differential expression data with a protein-protein interaction network. We test the impact of in-silico deletions of different proteins on the flow of information in the network and use the results to infer potential drug targets. We apply our method to AML data from TCGA and validate the predicted drug targets using known targets. To benchmark our patient-specific approach, we compare the personalized setting predictions to those of the conventional setting. Our predicted drug targets are highly enriched with known targets from DrugBank and COSMIC (p < 10(-5) outperforming the non-personalized predictions. Finally, we focus on the largest AML patient subgroup (~30%) which is characterized by an FLT3 mutation, and utilize our prediction score to rank patient sensitivity to inhibition of each predicted target, reproducing previous findings of in-vitro experiments.

Download full-text PDF

Source

Publication Analysis

Top Keywords

drug targets
16
personalized setting
8
predicted drug
8
targets
6
drug
5
inference personalized
4
personalized drug
4
targets network
4
network propagation
4
propagation computational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!