Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats.

Food Chem

Food Contaminants Division, Department of Food Safety Evaluation, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong-eup, Cheongwon-gun, Chungcheongbuk-do 363-700, South Korea. Electronic address:

Published: May 2016

Polycyclic aromatic hydrocarbons (PAHs) are chemicals formed when muscle meat is cooked using high-temperature methods, such as grilling directly over an open flame. PAHs have been found to be mutagenic-that is, they cause changes in DNA that may increase the risk of cancer. We investigated the effects of grilling procedures on the level of 4 PAHs; benzo[a]anthracene (B[a]A), chrysene (Chr), benzo[b]fluoranthene (B[b]F), and benzo[a]pyrene (B[a]P). PAHs were extracted and determined by gas chromatography with mass detection (GC-MS). With regard to barbecuing successive meat samples with the same batch of burning charcoal, it was observed that stable combustion contribute to reduction of PAHs. Significant reductions in the sum of the four PAHs were observed through treatments which removed meat drippings and smoke with alternative grilling apparatus. The sums of 4 PAHs were reduced 48-89% with dripping removed and 41-74% with the smoke removal treatment in grilled pork and beef meats than conventional grilling. We investigated the components of meats drippings. The major constituent of meat dripping was fat. The most important factor contributing to the production of PAHs in grilling was smoke resulting from incomplete combustion of fat dripped onto the fire.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2015.12.017DOI Listing

Publication Analysis

Top Keywords

effects grilling
8
grilling procedures
8
polycyclic aromatic
8
aromatic hydrocarbons
8
pahs
8
grilling
5
procedures levels
4
levels polycyclic
4
hydrocarbons grilled
4
grilled meats
4

Similar Publications

Determination and validation of polycyclic aromatic hydrocarbons (PAH4) in katsuobushi, plant-based food supplements, and cocoa bean shells using GC-MS/MS.

J Food Drug Anal

December 2024

Division of Research and Analysis, Taiwan Food and Drug Administration, Ministry of Health and Welfare, No.161-2, Kunyang St, Nangang District, Taipei City 11561, Taiwan, R.O.C.

Polycyclic aromatic hydrocarbons (PAHs) are primarily generated through the incomplete combustion or pyrolysis of organic materials in various industrial processes. Foods may become contaminated with environmental PAHs found in air, soil, or water, or through industrial food processing methods such as smoking, roasting, drying, and grilling. The Ministry of Health and Welfare in Taiwan has established maximum levels for benzo[a]pyrene (BaP) and indicative values for BaP as well as PAH4 (the sum of benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) in foods as operational guidelines.

View Article and Find Full Text PDF

Effects of varying levels of arginine (Arg) and aspartic acid (Asp) on the water-holding capacity (WHC) and eating quality of marinated pork meat were investigated. The addition of Arg significantly enhanced the WHC of marinated pork meat (P < 0.05) due to the increased pH levels of the meat.

View Article and Find Full Text PDF

In-House Immunoglobulin Y-Based Immunoassay for Detecting Benzo[a]pyrene in Grilled Pork Samples.

Biosensors (Basel)

December 2024

School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.

Benzo[a]pyrene (B[a]P) is a hazardous polycyclic aromatic hydrocarbon that accumulates in several environmental matrices as a result of incomplete combustion. Its presence, carcinogenic properties, and tendency for bioaccumulation provide significant risks to human health and the environment. The objective of this study is to create an immunoassay for the detection of benzo[a]pyrene utilizing immunoglobulin Y antibodies.

View Article and Find Full Text PDF

A stable solid electrolyte interphase (SEI) is of great importance for battery electrodes in terms of cycling as well as for its shelf life. While SEI formation on silicon anodes is generally only studied after the first charge and discharge of cells and initial reaction of electrolyte, we show the formation of a liquid/solid SEI in symmetric cells with silicon electrodes in contact with carbonate and glyme-based electrolytes under close to open circuit conditions and its behavior during long-term ageing. Activation energies of SEIs were measured via temperature-dependent electrochemical impedance spectroscopy (EIS) to study the contribution of liquid/solid phases to ion transport.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has exposed a devastating youth mental health crisis in the United States, characterized by an all-time high prevalence of youth mental illness. This crisis is exacerbated by limited access to mental health services and the reduction of mental health support in schools. Mobile health platforms offer a promising avenue for delivering tailored and on-demand mental health care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!