Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reflection high-energy electron diffraction is presented as a contactless, surface-specific method to probe the ion organization and layering at the ionic liquid-solid interfaces. Three regimes can be identified for the structure of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][Tf2N]) on highly oriented pyrolytic graphite, which is strongly dependent on the distances of ions from the surface. Direct observations showed that the ultrathin ionic liquid (IL) assembly can exhibit bulk-like phase-transition behaviours as a result of the structural matching between the IL and graphite layers and the confinement template effect due to the surface topography of graphite. The present study illustrates the opportunities for conducting further studies of the structures and ultrafast dynamics of IL-solid interfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp07575k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!