Caveolin-1 is a membrane protein that possesses an unusual topology where both N- and C-termini are cytoplasmic as a result of a membrane-embedded turn. In particular, proline 110 has been postulated to be the linchpin of this unusual motif. Using a caveolin-1 construct (residues 62-178) reconstituted into dodecylphosphocholine micelles with and without a cholesterol mimic, the changes that occurred upon P110A mutation were probed. Using far UV circular dichroism spectroscopy it was shown that cholesterol attenuated the helicity of caveolin-1, and that mutation of P110 to alanine caused a significant increase in the α-helicity of the protein. Near UV circular dichroism spectroscopy showed significant changes in structure and/or environment upon mutation that again were modulated by the presence of cholesterol. Stern-Volmer quenching and λ(max) analysis of tryptophan residues showed that the proline mutation caused W85 to become more exposed, W98 and W115 to become less exposed, and W128 showed no change. This finding provided evidence that regions proximal and far away from the proline are buried differentially upon its mutation and therefore this residue is strongly tied to maintaining the hydrophobic coverage along the caveolin-1 sequence. In the presence of cholesterol, the accessibilities of the two tryptophan residues that proceeded position 110 were altered much more significantly upon P110A mutation than the two tryptophans aft P110. Overall, this work provides strong evidence that proline 110 is critical for maintaining both the structure and hydrophobic coverage of caveolin-1 and that cholesterol also plays a significant role in modulating these parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779658 | PMC |
http://dx.doi.org/10.1016/j.bbamem.2016.01.007 | DOI Listing |
Talanta
December 2024
Analytical Chemistry Division, Chemistry Department, Lomonosov Moscow State University, 119234, Moscow, Russia. Electronic address:
Novel and simple spectrophotometric and distance based procedures for thiols (L-cysteine, N-acetylcysteine, and glutathione) determination in biological fluids and pharmaceuticals have been proposed based on their inhibitory action on the oxidation of catechol in the presence of Agaricus bisporus crude extract (ABE). The influence of L-glycine, L-alanine, L-proline, L-methionine, L-cystine, ascorbic acid, uric acid, and bilirubin on the thiol determination has been investigated. Uric acid, bilirubin, L-cystine (oxidized thiol), and L-amino acids do not interfere with the determination.
View Article and Find Full Text PDFPeerJ
December 2024
Lingnan Normal University, Zhanjiang, China.
EBioMedicine
December 2024
New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southwest United Graduate School, Kunming 650092, China. Electronic address:
Int J Mol Sci
October 2024
Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198 Shi-Qiao Road, Hangzhou 310021, China.
Gamma irradiation-based mutant creation is one of the most important methods for rice plant mutagenesis breeding and molecular biology research. Although median lethal dose irradiation severely damages rice seedlings, applying brassinolide (BR) can increase the survival rate of irradiated seedlings. In this study, we investigated the effects of soaking seeds in solutions containing different BR concentrations (0.
View Article and Find Full Text PDFPlant Cell Rep
October 2024
Amity Institute of Biotechnology, Amity University Madhya Pradesh, Gwalior, India.
ARG6 and ARG10 pea accessions exhibited better tolerance to drought by keeping drought-associated attributes stable and higher, that is, stable chlorophyll content, high antioxidant activity, and the presence of polymorphic bands with stress-responsive EST-SSR markers. Each year, a significant portion of crops is lost due to various abiotic stresses, and even pea (Pisum sativum) crop growth and yield are severely affected by the challenges posed by drought stress. Drought is a critical factor that limits crop growth and development, and its impact is exacerbated by changes in the magnitude of climatic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!