Aims: Traumatic brain injury (TBI) occurs when the head is impacted by an external force causing either a closed or penetrating head injury through a direct or accelerating impact. In laboratory research, most of the TBI animal models focus on a specific region to cause brain injury, but traumatic injuries in patients do not always impact the same brain regions. The aim of this study was to examine the histopathological effects of different angles of mechanical injury by manipulating the trajectory of the controlled cortical impact injury (CCI) model in adult Sprague-Dawley rats.
Methods: The CCI model was manipulated as follows: conventional targeting of the frontal cortex, farthest right angle targeting the frontal cortex, closest right angle targeting the frontal cortex, olfactory bulb injury, and cerebellar injury. Three days after TBI, brains were harvested to analyze cortical and hippocampal cell loss, neuroinflammatory response, and neurogenesis via immunohistochemistry.
Results: Results revealed cell death in the M1 region of the cortex across all groups, and in the CA3 area from olfactory bulb injury group. This observed cell death involved upregulation of inflammation as evidenced by rampant MHCII overexpression in cortex, but largely spared Ki-67/nestin neurogenesis in the hippocampus during this acute phase of TBI.
Conclusion: These results indicate a trajectory-dependent injury characterized by exacerbation of inflammation and different levels of impaired cell proliferation and neurogenesis. Such multiple brain areas showing varying levels of cell death after region-specific CCI model may closely mimic the clinical manifestations of TBI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4849201 | PMC |
http://dx.doi.org/10.1111/cns.12485 | DOI Listing |
Neurosurg Rev
January 2025
Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK.
Minimally invasive parafascicular surgery (MIPS) with the use of tubular retractors achieve a safe resection in deep seated tumours. Diffusion changes noted on postoperative imaging; the significance and clinical correlation of this remains poorly understood. Single centre retrospective cohort study of neuro-oncology patients undergoing MIPS.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Radiology, The Second Xiangya Hospital of Central South University, No. 139, Renmin Middle Road, Furong District, Changsha City, Hunan Province, 410011, China.
Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.
View Article and Find Full Text PDFAnn Neurol
January 2025
Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA.
The long-term clinical outcomes and associated prognostic factors in contactin-associated protein-like 2 (CASPR2)-antibody diseases are unknown. A total of 75 participants with CASPR2 antibodies were longitudinally assessed for disability, quality-of-life, and chronic pain. Although most symptoms improved within 6 months of treatment, neuropathic pain and fatigue were the most immunotherapy refractory, and persisted for up to 6 years.
View Article and Find Full Text PDFFASEB J
January 2025
National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China.
Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!