Enteroendocrine cells are a potential source of serum autotaxin in men.

Biochim Biophys Acta

Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology and Hepatology, Academic Medical Centre, Amsterdam, The Netherlands. Electronic address:

Published: April 2016

Objective: Serum autotaxin (ATX) activity is significantly increased in cholestatic patients. Our study aimed to unravel the source(s) of ATX in cholestasis.

Materials And Methods: ATX activity and protein were measured in sera of healthy (n=33) and cholestatic patients (n=152), including women with intrahepatic cholestasis of pregnancy. ATX mRNA and protein expression were analyzed in various tissues from mice and men. Induction of ATX activity was assessed in mouse models of extrahepatic (bile duct ligation) and intrahepatic cholestasis (Atp8b1(G308V/G308V), 0.1% cholate-supplemented diet). ATX clearance in cholestatic and control mice was assessed after intravenous injection of recombinant ATX. Human hepatic clearance was estimated by comparing ATX activity in portal and hepatic vein serum.

Results: Serum ATX activity and ATX protein concentration tightly correlated under all conditions in patients and controls (p<0.0001). In humans Atx mRNA was highly expressed in small intestine, whereas in mice Atx was expressed mainly in brain and placenta but not in small intestine. Extensive ATX protein expression was identified in human, but not murine intestinal enteroendocrine cells. In murine models of cholestasis and cholestatic pregnancy plasma ATX activity was only mildly elevated (up to 2.1-fold). Atx tissue expression and rATX clearance after parenteral administration did not differ between cholestatic and control mice.

Conclusion: Serum ATX activity during cholestasis and itch is enhanced by increased protein concentration rather than enzymatic induction. In mice, clearance of ATX is not affected by cholestasis. Small intestinal ATX expression by enteroendocrine cells might represent an important source of cholestasis-induced serum ATX activity in men.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2016.01.012DOI Listing

Publication Analysis

Top Keywords

atx activity
20
atx
10
serum autotaxin
8
cholestatic patients
8
intrahepatic cholestasis
8
activity
5
enteroendocrine cells
4
cells potential
4
potential source
4
source serum
4

Similar Publications

Pulmonary fibrosis (PF) is a progressive, fatal lung disease lacking effective treatments. Autotaxin (ATX) plays a crucial role in exacerbating inflammation and fibrosis, making it a promising target for fibrosis therapies. Herein, starting from PAT-409 (Cudetaxestat), a series of novel ATX inhibitors bearing 1-indole-3-carboxamide, 4,5,6,7-tetrahydro-7-pyrazolo[3,4-]pyridin-7-one, or 4,5,6,7-tetrahydro-1-pyrazolo[4,3-]pyridine cores were designed based on the structure of ATX hydrophobic tunnel.

View Article and Find Full Text PDF

: To examine the regulatory role of PCNA in MM, we have targeted PCNA with the experimental drug ATX-101 in three commercial cell lines (JJN3, RPMI 1660, AMO) and seven in-house patient-derived cell lines with a more primary cell-like phenotype (TK9, 10, 12, 13, 14, 16 and 18) and measured the systemic molecular effects. : We have used a multi-omics untargeted approach, measuring the gene expression (transcriptomics), a subproteomics approach measuring mainly signalling proteins and proteins in complex with these (signallomics) and quantitative metabolomics. These results are supplemented with traditional analysis, e.

View Article and Find Full Text PDF

Aflatoxin M (AFM) is a pathogenic metabolite transferred from feed into milk from aflatoxin (AF) B, B, G, and G; thus, it poses a human health risk. Therefore, effective mitigation strategies are needed to reduce animal and human exposure to AF. Study objectives were to evaluate a dietary adsorbent (Silicoglycidol, ATX) as a sequestering agent in AF-contaminated feed and to broadly examine how AF affects liver function and the immune system.

View Article and Find Full Text PDF

Autotaxin (ATX), encoded by ENPP2, is a clinical target in pancreatic ductal adenocarcinoma (PDAC). ATX catalyzes the production of lysophosphatidic acid (LPA), an important regulator within the tumor microenvironment (TME), yet the pro-tumorigenic action of the ATX/LPA axis in PDAC remains unclear. Here, by interrogating patient samples and cell line datasets, we show that the PDAC TME, rather than cancer cells, is responsible for the majority of ENPP2 expression, and highlight a key role for cancer associated fibroblast (CAF)-derived ATX in autocrine and paracrine pro-tumorigenic signaling.

View Article and Find Full Text PDF

Design, synthesis and evaluation of 3-(2-(substituted benzyloxy)benzylidene) pyrrolidine-2,5-dione derivatives for novel ATX inhibitor.

Bioorg Med Chem Lett

December 2024

Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, KRICT School, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea. Electronic address:

Article Synopsis
  • Autotaxin (ATX) is being targeted for new liver disease treatments, and drug candidates were identified through high-throughput screening methods.
  • Researchers synthesized a small molecule called KR-40795, designed to inhibit ATX's activity by binding to specific regions of the enzyme.
  • KR-40795 effectively reduced collagen formation and lipid accumulation in liver cells, showcasing its potential to treat liver conditions like fibrosis and steatosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!