Intrinsic connectivity of neural networks in the awake rabbit.

Neuroimage

Department of Radiology, Feinberg School of Medicine, Northwestern University, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611, USA.

Published: April 2016

AI Article Synopsis

  • The study investigates the brain's functional connectivity in rabbits to better understand neural processing, a topic crucial for research.
  • Rabbits are ideal for this research as they can undergo MRI scans while awake, allowing for clearer insights without the effects of anesthesia.
  • The researchers identified seven intrinsic functional networks in the rabbit brain, similar to those found in humans and other animals, positioning rabbits as valuable models for future neuroscience studies.

Article Abstract

The way in which the brain is functionally connected into different networks has emerged as an important research topic in order to understand normal neural processing and signaling. Since some experimental manipulations are difficult or unethical to perform in humans, animal models are better suited to investigate this topic. Rabbits are a species that can undergo MRI scanning in an awake and conscious state with minimal preparation and habituation. In this study, we characterized the intrinsic functional networks of the resting New Zealand White rabbit brain using BOLD fMRI data. Group independent component analysis revealed seven networks similar to those previously found in humans, non-human primates and/or rodents including the hippocampus, default mode, cerebellum, thalamus, and visual, somatosensory, and parietal cortices. For the first time, the intrinsic functional networks of the resting rabbit brain have been elucidated demonstrating the rabbit's applicability as a translational animal model. Without the confounding effects of anesthetics or sedatives, future experiments may employ rabbits to understand changes in neural connectivity and brain functioning as a result of experimental manipulation (e.g., temporary or permanent network disruption, learning-related changes, and drug administration).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4803608PMC
http://dx.doi.org/10.1016/j.neuroimage.2016.01.010DOI Listing

Publication Analysis

Top Keywords

rabbit brain
12
intrinsic functional
8
functional networks
8
networks resting
8
networks
5
intrinsic connectivity
4
connectivity neural
4
neural networks
4
networks awake
4
awake rabbit
4

Similar Publications

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

cuniculi infection in rabbits represents a true challenge in both diagnosis and treatment of the disease. This study aims to describe and analyze all methods of identifying the presence of the microsporidian in a rabbit through antemortem and postmortem methods. The patient manifested clinical signs of vestibular disease and mild renal symptoms with no significant improvement under treatment, which finally led to euthanasia.

View Article and Find Full Text PDF

Background: Long QT Syndrome Type-2 (LQT2) is due to loss-of-function variants. encodes K 11.1 that forms a delayed-rectifier potassium channel in the brain and heart.

View Article and Find Full Text PDF

Biodegradable PHBVHHx-PEG/Collagen Hydrogel Scaffolds for Cartilage Repair.

Tissue Eng Part A

January 2025

Department of Orthopedic Surgery and Orthopedic Research Institute, Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, China.

Recently, there has been increased attention on the treatment of cartilage repair. Overall, we constructed PHBVHHx-COL, a composite hydrogel of PHBVHHx-co-PEG and collagen, and evaluated its cartilage repair efficacy through and studies using hydrogel loaded with peripheral blood-derived mesenchymal stem cells (PBMSCs). Rheological properties and compressive mechanical properties of the hydrogels were systematically evaluated.

View Article and Find Full Text PDF

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

Nat Commun

December 2024

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!