Pluripotent or multipotent cell-based therapeutics are vital for skeletal reconstruction in non-healing critical-sized defects since the local endogenous progenitor cells are not often adequate to restore tissue continuity or function. However, currently available cell-based regenerative strategies are hindered by numerous obstacles including inadequate cell availability, painful and invasive cell-harvesting procedures, and tumorigenesis. Previously, we established a novel platform technology for inducing a quiescent stem cell-like stage using only a single extracellular proteoglycan, fibromodulin (FMOD), circumventing gene transduction. In this study, we further purified and significantly increased the reprogramming rate of the yield multipotent FMOD reprogrammed (FReP) cells. We also exposed the 'molecular blueprint' of FReP cell osteogenic differentiation by gene profiling. Radiographic analysis showed that implantation of FReP cells into a critical-sized SCID mouse calvarial defect, contributed to the robust osteogenic capability of FReP cells in a challenging clinically relevant traumatic scenario in vivo. The persistence, engraftment, and osteogenesis of transplanted FReP cells without tumorigenesis in vivo were confirmed by histological and immunohistochemical staining. Taken together, we have provided an extended potency, safety, and molecular profile of FReP cell-based bone regeneration. Therefore, FReP cells present a high potential for cellular and gene therapy products for bone regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754141 | PMC |
http://dx.doi.org/10.1016/j.biomaterials.2016.01.013 | DOI Listing |
Molecules
August 2023
Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
fermentation extract (FREP) was obtained by ethanol precipitation of the fermentation broth. The molecular weight of FREP is 28.52 kDa, and it mainly contains active ingredients such as polysaccharides, proteins, reducing sugars, and 16 amino acids.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2022
Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-970, Fortaleza, Ceará, Brazil. Electronic address:
Fibrinogen-related proteins (FREPs) have been identified in several animals. They are involved in the body's defense, acting as mediators of phagocytosis. Ficolins and intelectins are some of the most studied Fibrinogen-related Domain (FReD)-containing lectins.
View Article and Find Full Text PDFMol Biol Rep
August 2022
Cancer Center, Molecular Diagnosis Laboratory, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China.
Background: Fibrinogen-like-protein 1 (FGL1), a member of the fibrinogen-related protein (FREP) family, is a major ligand of the immune inhibitory receptor lymphocyte-activation gene 3 (LAG-3). While FGL1 is strongly implicated in the development and prognosis of a variety of diseases, its role in hepatocellular carcinoma (HCC) is still disputed. Therefore, the role of FGL1 expression in the progression and prognosis of HCC was investigated.
View Article and Find Full Text PDFNucleic Acids Res
January 2022
Aging Institute, University of Pittsburgh, Pittsburgh, PA 15219, USA.
Growing evidence suggests that functional cis-regulatory elements (cis-REs) not only exist in epigenetically marked but also in unmarked sites of the human genome. While it is already difficult to identify cis-REs in the epigenetically marked sites, interrogating cis-REs residing within the unmarked sites is even more challenging. Here, we report adapting Reel-seq, an in vitro high-throughput (HTP) technique, to fine-map cis-REs at high resolution over a large region of the human genome in a systematic and continuous manner.
View Article and Find Full Text PDFGene
September 2021
Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India. Electronic address:
Anopheles stephensi and Anopheles culicifacies are dominant malarial vectors in urban and rural India, respectively. Both species carry significant biological differences in their behavioral adaptation and immunity, but the genetic basis of these variations are still poorly understood. Here, we uncovered the genetic differences of immune blood cells, that influence several immune-physiological responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!