Purpose: Proton therapy has been shown to reduce radiation dose to organs at risk (OAR) and could be used to safely escalate the radiation dose. We analyzed outcomes in a group of phase 2 study patients treated with dose-escalated proton therapy with concurrent chemotherapy for stage 3 non-small cell lung cancer (NSCLC).

Methods And Materials: From 2009 through 2013, LU02, a phase 2 trial of proton therapy delivering 74 to 80 Gy at 2 Gy/fraction with concurrent chemotherapy for stage 3 NSCLC, was opened to accrual at our institution. Due to slow accrual and competing trials, the study was closed after just 14 patients (stage IIIA, 9 patients; stage IIIB, 5 patients) were accrued over 4 years. During that same time period, 55 additional stage III patients were treated with high-dose proton therapy, including 7 in multi-institutional proton clinical trials, 4 not enrolled due to physician preference, and 44 who were ineligible based on strict entry criteria. An unknown number of patients were ineligible for enrollment due to insurance coverage issues and thus were treated with photon radiation. Median follow-up of surviving patients was 52 months.

Results: Two-year overall survival and progression-free survival rates were 57% and 25%, respectively. Median lengths of overall survival and progression-free survival were 33 months and 14 months, respectively. There were no acute grade 3 toxicities related to proton therapy. Late grade 3 gastrointestinal toxicity and pulmonary toxicity each occurred in 1 patient.

Conclusions: Dose-escalated proton therapy with concurrent chemotherapy was well tolerated with encouraging results among a small cohort of patients. Unfortunately, single-institution proton studies may be difficult to accrue and consideration for pragmatic and/or multicenter trial design should be considered when developing future proton clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2015.11.004DOI Listing

Publication Analysis

Top Keywords

proton therapy
28
concurrent chemotherapy
16
proton
10
phase trial
8
stage iii
8
non-small cell
8
cell lung
8
lung cancer
8
radiation dose
8
patients
8

Similar Publications

Objectives: Our aim was to systematically review the cost-effectiveness of proton pump inhibitor (PPI) therapies and surgical interventions for gastro-oesophageal reflux disease (GORD).

Design: The study design was a systematic review of economic evaluations.

Data Sources: We searched PubMed, Embase, Scopus, and Web of Science for publications from January 1990 to March 2023.

View Article and Find Full Text PDF

This letter critically evaluates the conclusions drawn by Li et al. (https://doi.org/10.

View Article and Find Full Text PDF

Objective: Ewing sarcoma (EWS) of the mediastinum is extremely rare, with only a few cases reported in the literature. We aimed to gain a better understanding of primary mediastinal EWS, describing patients treated within two international, multicenter, prospective, randomized EWS trials.

Methods: Data from patients with primary mediastinal EWS were retrieved from the database of the EURO-E.

View Article and Find Full Text PDF

Evaluating Neoadjuvant Immunochemotherapeutic Response for Bladder Carcinoma Using Amide Proton Transfer-Weighted MRI.

Acad Radiol

January 2025

Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, PR China (L.K., B.W., Q.C., L.M., W.C., Y.C., Y.G., H.W.). Electronic address:

Rationale And Objectives: To investigate the feasibility of amide proton transfer-weighted (APTw) and diffusion-weighted MRI in evaluating the response of bladder cancer (BCa) to neoadjuvant immunochemotherapy.

Materials And Methods: From June 2021 to July 2023, participants with pathologically confirmed BCa were prospectively recruited to undergo MRI examinations, including APTw and diffusion-weighted MRI before and after neoadjuvant immunochemotherapy. Histogram analysis features (mean, median, and entropy) were extracted from pre- and post-treatment APTw and apparent diffusion coefficient (ADC) maps, respectively.

View Article and Find Full Text PDF

H-F cross-polarization magic angle spinning dynamic nuclear polarization NMR investigation of advanced pharmaceutical formulations.

J Magn Reson

December 2024

Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden.

A new 3.2 mm H-F-X magic angle spinning dynamic nuclear polarization NMR (MAS DNP-NMR) probe was developed with a unique coil design with separate radiofrequency channels for H excitation and C or F detection to enable acquisition of H-F cross-polarization (CP) MAS experiments, direct-detected F spectra with proton decoupling, and acquisition on C with simultaneous double decoupling on the H and 19F channels as well as H-F-C double-CP experiments under low temperature MAS DNP conditions. We use these sequences to study AZD2811, which is an active pharmaceutical ingredient (API), in its pure dry state as well as in its corresponding drug delivery formulation consisting of drug-loaded polymeric nanoparticles (PNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!