The effect of Cr(III) and Cr(VI) on nitrification was examined with samples from nitrifying enrichment cultures using three different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification, and by analysis of 16S rRNA sequences to determine changes in structure and activity of the microbial communities. The nitrifying bioreactor was operated as a continuous reactor with a 24 h hydraulic retention time. The samples were exposed in batch vessels to Cr(III) (10-300 mg/L) and Cr(VI) (1-30 mg/L) for a period of 12 h. There was considerable decrease in SOUR with increasing dosages for both Cr(III) and Cr(VI), however Cr(VI) was more inhibitory than Cr(III). Based on the RT-qPCR data, there was reduction in the transcript levels of amoA and hao for increasing Cr(III) dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. For Cr(VI) exposure, there was comparatively little reduction in amoA expression while hao expression decreased for 1-3 mg/L Cr(VI) and increased at 30 mg/L Cr(VI). While Nitrosomonas spp. were the dominant bacteria in the bioreactor, based on 16S rRNA sequencing, there was a considerable reduction in Nitrosomonas activity upon exposure to 300 mg/L Cr(III). In contrast, a relatively small reduction in activity was observed at 30 mg/L Cr(VI) loading. Our data that suggest that both Cr(III) and Cr(VI) were inhibitory to nitrification at concentrations near the high end of industrial effluent concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.12.119DOI Listing

Publication Analysis

Top Keywords

criii crvi
16
mg/l crvi
16
16s rrna
12
crvi
10
crvi nitrification
8
crvi inhibitory
8
criii
7
mg/l
6
effects criii
4
nitrification
4

Similar Publications

In this study, kapok fiber (KF) a hollow and hydrophobic fiber, was modified with cetyltrimethylammonium bromide (CTAB) or cetylpyridinium chloride (CPC), rendering adsorbed amount of ∼0.75 × 10 mol/g. Small-angle X-ray scattering (SAXS) measurements of dry KF/CTAB and KF/CPC evidenced a periodic distance of ∼2.

View Article and Find Full Text PDF

Simple and Rapid HPLC-ICP-MS Method for the Simultaneous Determination of Cr(III) and Cr(VI) by Combining a 2,6-Pyridinedicarboxylic Acid Pre-Complexation Treatment.

Mass Spectrom (Tokyo)

December 2024

Department of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, Gakuen-Uegahara-1, Sanda, Hyogo 669-1330, Japan.

A simple and rapid analytical method was developed for the simultaneous determination of two chromium species, Cr(III) and Cr(VI), in the environmental waters by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). This study incorporated a chelating pretreatment with 2,6-pyridinedicarboxylic acid (PDCA) to convert Cr(III) species into a stable Cr(III)-PDCA anion complex, which was then separated from Cr(VI) oxyanion using an anion exchange column. Building on the fundamental analytical approach proposed by Shigeta .

View Article and Find Full Text PDF

Photochemical oxidation of Cr(III) to Cr(VI) in the presence of Fe(III): Influence of Fe(III) concentration and UV wavelength.

J Hazard Mater

December 2024

Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan. Electronic address:

The reduction of Cr(VI) to Cr(III) is key to lowering environmental toxicity and mobility, but the reverse process remains less understood. We investigated Cr(III) oxidation mechanisms across various pH levels and light wavelengths (185, 254, and 358 nm) in the presence of Fe(III). At pH 3.

View Article and Find Full Text PDF

Remediation of Cr(VI) Polluted Groundwater Using Zero-Valent Iron Composites: Preparation, Modification, Mechanisms, and Environmental Implications.

Molecules

December 2024

Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China.

The extensive application of chromium (Cr) in many industries has inevitably resulted in the release of Cr(VI) into the groundwater environment, thus posing damage to the ecosystem and human health. Nano zero-valent iron (nZVI) has been widely studied and applied in the remediation of Cr(VI)-contaminated water as an ideal material with high reductive capacity, which enables the transformation of teratogenic and carcinogenic Cr(VI) into less toxic Cr(III). This review comprehensively summarizes the preparation and modification methods of nZVI Cr(VI) removal performance and mechanisms by nZVI and modified nZVI materials.

View Article and Find Full Text PDF

The study focuses on validating reference methods such as ICP-OES and ICP-MS for detecting ultra-trace levels of chromium in groundwater, where concentrations are typically very low. Additionally, it verifies a hyphenated technique, IC-ICP-MS, for determining naturally occurring Cr(VI) in tested waters. The validation process involved various chromium analysis variants, including isotopes Cr and Cr in ICP-MS and IC-ICP-MS techniques, along with specific emission lines in the ICP-OES technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!