The shelterin proteins protect telomeres against activation of the DNA damage checkpoints and recombinational repair. We show here that a dimer of the shelterin subunit TRF2 wraps ∼ 90 bp of DNA through several lysine and arginine residues localized around its homodimerization domain. The expression of a wrapping-deficient TRF2 mutant, named Top-less, alters telomeric DNA topology, decreases the number of terminal loops (t-loops), and triggers the ATM checkpoint, while still protecting telomeres against non-homologous end joining (NHEJ). In Top-less cells, the protection against NHEJ is alleviated if the expression of the TRF2-interacting protein RAP1 is reduced. We conclude that a distinctive topological state of telomeric DNA, controlled by the TRF2-dependent DNA wrapping and linked to t-loop formation, inhibits both ATM activation and NHEJ. The presence of RAP1 at telomeres appears as a backup mechanism to prevent NHEJ when topology-mediated telomere protection is impaired.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001171 | PMC |
http://dx.doi.org/10.1016/j.molcel.2015.12.009 | DOI Listing |
Neuron
January 2025
Departments of Psychiatry, Neuroscience, and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Peter O' Donnell Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:
DNA damage is a major risk factor for the decline of neuronal functions with age and in neurodegenerative diseases. While how DNA damage causes neurodegeneration is still being investigated, innovations over the past decade have provided significant insights into this issue. Breakthroughs in next-generation sequencing methods have begun to reveal the characteristics of neuronal DNA damage hotspots and the causes of DNA damage.
View Article and Find Full Text PDFMolecules
December 2024
Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Viale Europa, 88100 Catanzaro, Italy.
G-quadruplexes (G4s) are distinctive four-stranded nucleic acid structures formed by guanine-rich sequences, making them attractive targets for drug repurposing efforts. Modulating their stability and function holds promise for treating diseases like cancer. To identify potential drug candidates capable of interacting with these complex DNA formations, docking studies and molecular dynamics (MDs) simulations were conducted.
View Article and Find Full Text PDFExp Cell Res
January 2025
Department of Basic Science & Humanities,Raghu Engineering College, Visakhapatnam, India. Electronic address:
Transcription takes place over a significant portion of the human genome. However, only a small portion of the transcriptome, roughly 1.2%, consists of RNAs translated into proteins; the majority of transcripts, on the other hand, comprise a variety of RNA families with varying sizes and functions.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing, China.
Artificial simulated communication networks inspired by molecular communication in organisms use biological and chemical molecules as information carriers to realize information transmission. However, the design of programmable, multiplexed and general simulation models remains challenging. Here, we develop a DNA nanostructure recognition-based artificial molecular communication network (DR-AMCN), in which rectangular DNA origami nanostructures serve as nodes and their recognition as edges.
View Article and Find Full Text PDFMol Phylogenet Evol
December 2024
Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands; Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands. Electronic address:
The ease with which genome-wide data can nowadays be collected allows complicated phylogenetic questions to be re-evaluated. Phylogenetic relationships among newts have often proven difficult to resolve due to the prevalence of incomplete lineage sorting and introgressive hybridization. For the newt genus Lissotriton, phylogenetic relationships are not settled and there is controversy surrounding the species status of several taxa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!