30-99% of administered nanoparticles will accumulate and sequester in the liver after administration into the body. This results in reduced delivery to the targeted diseased tissue and potentially leads to increased toxicity at the hepatic cellular level. This review article focuses on the inter- and intra-cellular interaction between nanoparticles and hepatic cells, the elimination mechanism of nanoparticles through the hepatobiliary system, and current strategies to manipulate liver sequestration. The ability to solve the "nanoparticle-liver" interaction is critical to the clinical translation of nanotechnology for diagnosing and treating cancer, diabetes, cardiovascular disorders, and other diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2016.01.020 | DOI Listing |
Expert Opin Drug Deliv
June 2024
Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA.
Introduction: Understanding the interactions between administered nanoparticles and the liver is crucial for developing safe and effective nanomedicines. As the liver can sequester up to 99% of these particles due to its major phagocytic role, understanding these interactions is vital for clinical translation.
Areas Covered: This review highlights recent studies on nanoparticle-liver interactions, including the influence of nanoparticle physicochemical properties on delivery, strategies to enhance delivery efficiency by modulating liver Kupffer cells, and their potential for treating certain hepatic diseases.
Front Pharmacol
July 2021
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, China.
Gold nanoparticles (GNPs) have been used as a potential bioactive platform for drug delivery due to their unique optical and thermal characteristics. Liver is the main organ in orchestrating physiological homeostasis through metabolization of drugs and detoxification of exogenous substances. Therefore, it is crucial to deeply understand the mechanism of nanoparticle-liver interaction and the potential hepatic effects of GNPs .
View Article and Find Full Text PDFACS Nano
March 2018
Department of Supramolecular and Biomaterials Chemistry , Leiden Institute of Chemistry (LIC), Leiden University, P.O. Box 9502, 2300 RA Leiden , The Netherlands.
Up to 99% of systemically administered nanoparticles are cleared through the liver. Within the liver, most nanoparticles are thought to be sequestered by macrophages (Kupffer cells), although significant nanoparticle interactions with other hepatic cells have also been observed. To achieve effective cell-specific targeting of drugs through nanoparticle encapsulation, improved mechanistic understanding of nanoparticle-liver interactions is required.
View Article and Find Full Text PDFJ Control Release
October 2016
Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemistry, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering & Applied Chemistry, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Materials Science and Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada. Electronic address:
30-99% of administered nanoparticles will accumulate and sequester in the liver after administration into the body. This results in reduced delivery to the targeted diseased tissue and potentially leads to increased toxicity at the hepatic cellular level. This review article focuses on the inter- and intra-cellular interaction between nanoparticles and hepatic cells, the elimination mechanism of nanoparticles through the hepatobiliary system, and current strategies to manipulate liver sequestration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!