Basic fibroblast growth factor (bFGF) may protect stroke patients from cerebral ischemia-reperfusion (I/R) injury. In this study, we report the intranasal use of novel nanoliposomes for the brain delivery of bFGF in a rat model of cerebral I/R. Compared with free bFGF, nanoliposomal therapy was able to significantly improve bFGF accumulation in brain tissues (p<0.05) including the most affected ischemic penumbra regions (e.g. hippocampus, pallium). After intranasal bFGF-nanoliposomal treatment for 3 consecutive days, functional recovery as indicated by improved neurologic deficit score and spontaneous locomotor activity was observed, and the stroke infarct volume was nearly halved (p<0.001) which persisted after 21days. These neuroprotective effects could be blocked by the PI3-K/Akt inhibitor LY294002, indicating the involvement of PI3-K/Akt activation in the therapeutic action. Overall, our results support the intranasal use of nanoliposomal bFGF as an efficient, non-invasive means to bypass the blood-brain barrier for ischemic stroke treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2016.01.017DOI Listing

Publication Analysis

Top Keywords

delivery bfgf
8
bfgf
5
intranasal delivery
4
bfgf nanoliposomes
4
nanoliposomes enhances
4
enhances vivo
4
vivo neuroprotection
4
neuroprotection neural
4
neural injury
4
injury recovery
4

Similar Publications

Approaches to regenerate vocal fold in glottic insufficiency remains to be a focus for exploration. This is attributed to the applications of cells or biological molecules alone result in fast degradation and inadequate for regeneration. Development of an injectable hydrogel for glottic insufficiency is challenging, as it needs to be non-cytotoxic, elastic yet possess good strength and easy to fabricate.

View Article and Find Full Text PDF

The tympanic membrane (TM) is constantly in a state of vibrating. However, there is currently a lack of drug-delivery scaffolds suitable for the dynamic environment of TM perforation. In this study, a mechano-responsive tough hydrogel was developed.

View Article and Find Full Text PDF

Chronic wounds present significant challenges with high morbidity and mortality. A cost-effective dressing that can absorb large exudate volumes, is hemostatic and therapeutically active is of current interest. This study compares two crosslinking approaches on composite scaffolds comprising fish collagen (FCOL), hyaluronic acid (HA) and sodium alginate (SA) by respectively targeting HA and SA.

View Article and Find Full Text PDF

Topical delivery of gel-in-oil emulsion cocktail with growth factors for the treatment of diabetic pressure ulcers.

J Biosci Bioeng

November 2024

Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan. Electronic address:

Healing diabetic foot ulcers (DFUs) poses a serious challenge for many individuals with diabetes. The use of biomaterials applied locally for treating DFUs has recently garnered significant attention. Here, we present a gel-in-oil nanogel dispersion (G/O-NGD) capable of local delivery of six different growth factors (GFs) via the topical route, followed by an in-vivo evaluation in mice.

View Article and Find Full Text PDF

Harnessing synergistic effects of MMP-2 Inhibition and bFGF to simultaneously preserve and vascularize cardiac extracellular matrix after myocardial infarction.

Acta Biomater

January 2025

Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Center of Regenerative Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA. Electronic address:

Myocardial infarction (MI) leads to cardiac extracellular matrix (ECM) degradation and fibrosis, reducing heart function. Consequently, simultaneously addressing ECM degradation and inhibiting cardiac fibrosis is essential for preserving heart function and mitigating adverse remodeling. However, the preserved ECM becomes unstable if not vascularized, as its structure and composition undergo changes over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!