This study presents the techno-economic evaluation of 2,3-butanediol (BDO) production via fermentation using glycerol, sucrose and sugarcane molasses as carbon sources. Literature-cited experimental data were used to design the fermentation stage, whereas downstream separation of BDO was based on reactive extraction of BDO employing an aldehyde to convert BDO into an acetal that is immiscible with water. The selected downstream process can be used in all fermentations employed. Sensitivity analysis was carried out targeting the estimation of the minimum selling price (MSP) of BDO at different plant capacities and raw material purchase costs. In all cases, the MSP of BDO is higher than 1 $/kg that is considered as the target in order to characterize a fermentation product as platform chemical. The complex nutrient supplements, the raw material market price and the fermentation efficiency were identified as the major reasons for the relatively high MSP observed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.12.005DOI Listing

Publication Analysis

Top Keywords

techno-economic evaluation
8
msp bdo
8
raw material
8
bdo
6
evaluation complete
4
complete bioprocess
4
bioprocess 23-butanediol
4
23-butanediol production
4
production renewable
4
renewable resources
4

Similar Publications

Per- and polyfluoroalkyl substances (PFAS) are present in a variety of products that are disposed in landfills as waste and end up in landfill leachate which cause severe problems. The primary aim of this study was to detect PFAS in generated leachate in different sections of a process and disposal complex (called Aradkuh) located in Tehran, Iran. Due to techno economic limitations of measuring PFAS in Iran and easiness of measuring physicochemical parameters to determine PFAS concentration as well as better understanding of the mechanisms of these substances releases from landfills, this research aimed to evaluate the potential relationship between these parameters in landfill leachate.

View Article and Find Full Text PDF

Elevated emissions of flue gases deteriorate the quality of air, impacting both terrestrial and aquatic ecosystems through their contribution to acid rain and eutrophication. This study examines the bio-mitigation process in a packed bed reactor and its capacity to concurrently decrease the environmental consequences of industrial flue gases (CO, NO, and SO) and wastewater by employing mixed bacterial consortia. The highest biomass productivity achieved during the growth phase was 0.

View Article and Find Full Text PDF

Techno-economic dataset for energy market and capacity payment co-optimization in the Dominican Republic's power market.

Data Brief

February 2025

Área de Ciencias Básicas, Instituto Tecnológico de Santo Domingo, 49 Los Próceres Avenue, Santo Domingo 10602, Dominican Republic.

The electric power industry has an impact on fossil fuel consumption, which must be considered in decarbonization strategies. Energy systems optimization modelling can be applied to evaluate policy scenarios in the power sector to accelerate energy transitions. These modelling tools need data to simulate different scenarios in the power system to clarify the design of energy policies.

View Article and Find Full Text PDF

Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review.

ACS Environ Au

January 2025

Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.

The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization.

View Article and Find Full Text PDF

Flexible plastic packaging (FPP) is a growing waste source in the United States. Currently, FPP has a recycling rate of only 2% in the U.S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!