Single nucleotide polymorphism (SNP) arrays are increasingly being used in clinical routine for genetic analysis of pediatric B-cell precursor acute lymphoblastic leukemias (BCP ALL). Because constitutional DNA is not readily available as a control at the time of diagnosis, it is important to be able to distinguish between acquired and constitutional aberrations in a diagnostic setting. In the present study we focused on uniparental isodisomies (UPIDs). SNP array analyses of 143 pediatric and 38 adult B-cell precursor acute lymphoblastic leukemias and matched remission samples revealed acquired whole chromosome or segmental UPIDs (wUPIDs, sUPIDs) in 32 cases (18%), without any age- or gender-related frequency differences. Acquired sUPIDs were larger than the constitutional ones (mean 35.3 Mb vs. 10.7 Mb; P < 0.0001) and were more often terminally located in the chromosomes (69% vs. 4.5%; P < 0.0001). Chromosomes 3, 5, and 9 were most often involved in acquired wUPIDs, whilst recurrent acquired sUPIDs targeted 6p, 9p, 9q, and 14q. The majority (56%) of sUPID9p was associated with homozygous CDKN2A deletions. In pediatric ALL, all wUPIDs were found in high hyperdiploid (51-67 chromosomes) cases and an extended analysis, also including unmatched diagnostic samples, revealed a higher frequency of wUPID-positivity in higher modal number (56-67 chromosomes) than in lower modal number (51-55 chromosomes) high hyperdiploid cases (34% vs. 11%; P = 0.04), suggesting different underlying mechanisms of formation of these subtypes of high hyperdiploidy. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/gcc.22349DOI Listing

Publication Analysis

Top Keywords

b-cell precursor
12
precursor acute
12
acute lymphoblastic
12
acquired constitutional
8
uniparental isodisomies
8
pediatric adult
8
adult b-cell
8
lymphoblastic leukemias
8
samples revealed
8
acquired supids
8

Similar Publications

Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.

View Article and Find Full Text PDF

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

Acute lymphoblastic leukemia (ALL) is a malignant neoplasm with the highest incidence in the pediatric population. Although the 5-year overall survival is greater than 85%, in emerging countries such as Mexico, the mortality rate is high. In Mexico, B-ALL is the most common type of childhood cancer; different characteristics suggest the presence of the disease; however, the prognosis is dependent on clinical and laboratory features, and no adverse prognostic molecular marker for B-ALL has yet been identified.

View Article and Find Full Text PDF

This study investigates the interrelationship between human telomerase reverse transcriptase (hTERT) and ferroptosis in precursor-B (pre-B) acute lymphoblastic leukemia (ALL), specifically examining how hTERT modulation affects ferroptotic cell death pathways. Given that hTERT overexpression characterizes various cancer phenotypes and elevated telomerase activity is observed in early-stage and relapsed ALL, we investigated the molecular mechanisms linking hTERT regulation and ferroptosis in leukemia cells. The experimental design employed Nalm-6 and REH cell lines under three distinct conditions: curcumin treatment, hTERT siRNA knockdown, and their combination.

View Article and Find Full Text PDF

Anti-Idiotypic Antibody as a Booster Vaccine Against Respiratory Syncytial Virus.

Vaccines (Basel)

January 2025

Infectious Diseases and Vaccine Research, Merck & Co., Inc., Rahway, NJ 07065, USA.

The respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infections in children and adults. With nearly everyone infected by the age of five, there is an opportunity to develop booster vaccines that enhance B-cell immunity, promoting potent and broadly neutralizing antibodies. One potential approach involves using anti-idiotypic antibodies (anti-IDs) to mimic specific antigenic sites and enhance preexisting immunity in an epitope-specific manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!