Marine environments harbour a persistent microbial seed which can be shaped by changes of the environmental conditions such as contamination by petroleum components. Oil spills, together with small but continuous discharges of oil from transportation and recreational activities, are important sources of hydrocarbon pollution within the marine realm. Consequently, prokaryotic communities have become well pre-adapted toward oil pollution, and many microorganisms that are exposed to its presence develop an active degradative response. The natural attenuation of oil pollutants, as has been demonstrated in many sites, is modulated according to the intrinsic environmental properties such as the availability of terminal electron acceptors and elemental nutrients, together with the degree of pollution and the type of hydrocarbon fractions present. Whilst dynamics in the bacterial communities in the aerobic zones of coastal sediments are well characterized and the key players in hydrocarbon biodegradation have been identified, the subtidal ecology of the anaerobic community is still not well understood. However, current data suggest common patterns of response in these ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.copbio.2015.12.010 | DOI Listing |
Anal Methods
January 2025
Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar 364 002, Gujarat, India.
Monitoring persistent organic pollutants (POPs) with endocrine-disrupting properties poses significant analytical challenges due to labor-intensive, costly, and environmentally unsustainable procedures. This study developed an efficient and robust approach for the simultaneous detection of diverse groups of semi-volatile organics in water and sediment samples using gas chromatography-tandem mass spectrometry (GC-MS). Two extraction methods were studied for determining POPs in water and sediments.
View Article and Find Full Text PDFBiogeochemistry
January 2025
Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar.
Unlabelled: Blue carbon represents the organic carbon retained in marine coastal ecosystems. (an Arabic for "mudflats"), formed in tidal environments under arid conditions, have been proposed to be capable of carbon sequestrating. Despite the growing understanding of the critical role of blue carbon ecosystems, there is a current dispute about whether sabkhas around the Persian Gulf can contribute to carbon retention as a blue carbon ecosystem.
View Article and Find Full Text PDFMicrob Ecol
January 2025
College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
Estuarine ecosystems are among the most important natural ecosystems on Earth and contribute substantially to human survival and development. The Yellow River Estuary (YRE) is the second largest estuary in China. Microbial communities play an essential role in the material cycle and energy flow in estuarine ecosystems.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China.
As emerging pollutants, bisphenol A (BPA), tetrabromobisphenol A (TBBPA) and its analogs have become widespread in the coastal environment of China. To investigate the occurrence of these novel contaminants in Chinese marginal sea, 176 seawater and 88 sediment samples were collected from the Yellow Sea and East China Sea. In seawater and sediment, the detection rates of TBBPA are 83.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real 11510, Cádiz, Spain; Instituto Universitario de Investigación Marina (INMAR), Campus Universitario de Puerto Real, 11510 Cadiz, Spain.
Intertidal mudflats are among the most productive coastal ecosystems, largely because of the activity of the photosynthetic microbial community on the sediment surface, known as microphytobenthos (MPB). While the dynamics of MPB have been extensively studied in temperate estuaries, there is limited research in tropical estuaries. To address this knowledge gap, we investigated the spatio-temporal dynamics of MPB in the Nicoya Gulf (Costa Rica), one of the world's most productive tropical estuaries, using Sentinel-2 images at 10 m spatial resolution from 2018 to 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!