A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A quantitative cell modeling and wound-healing analysis based on the Electric Cell-substrate Impedance Sensing (ECIS) method. | LitMetric

A quantitative cell modeling and wound-healing analysis based on the Electric Cell-substrate Impedance Sensing (ECIS) method.

Comput Biol Med

Department of Physical Therapy and the Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan, Taiwan.

Published: February 2016

In this paper, a quantitative modeling and wound-healing analysis of fibroblast and human keratinocyte cells is presented. Our study was conducted using a continuous cellular impedance monitoring technique, dubbed Electric Cell-substrate Impedance Sensing (ECIS). In fact, we have constructed a mathematical model for quantitatively analyzing the cultured cell growth using the time series data directly derived by ECIS in a previous work. In this study, the applicability of our model into the keratinocyte cell growth modeling analysis was assessed first. In addition, an electrical "wound-healing" assay was used as a means to evaluate the healing process of keratinocyte cells at a variety of pressures. Two innovative and new-defined indicators, dubbed cell power and cell electroactivity, respectively, were developed for quantitatively characterizing the biophysical behavior of cells. We then employed the wavelet transform method to perform a multi-scale analysis so the cell power and cell electroactivity across multiple observational time scales may be captured. Numerical results indicated that our model can well fit the data measured from the keratinocyte cell culture for cell growth modeling analysis. Also, the results produced by our quantitative analysis showed that the wound healing process was the fastest at the negative pressure of 125mmHg, which consistently agreed with the qualitative analysis results reported in previous works.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2015.12.022DOI Listing

Publication Analysis

Top Keywords

cell growth
12
modeling wound-healing
8
wound-healing analysis
8
electric cell-substrate
8
cell-substrate impedance
8
impedance sensing
8
sensing ecis
8
keratinocyte cells
8
cell
8
keratinocyte cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!