It is generally assumed that astatide (At(-) ) is the predominant astatine species in basic aqueous media. This assumption is questioned in non-complexing and non-reductive aqueous solutions by means of high-pressure anion-exchange chromatography. Contrary to what is usually believed, astatide is found to be a minor species at pH=11. A different species, which also bears a single negative charge, becomes predominant when the pH is increased beyond 7. Using competition experiments, an equilibrium constant value of 10(-6.9) has been determined for the formation of this species from AtO(OH) with the exchange of one proton. The identification of this species, AtO(OH)2 (-) , is achieved through relativistic quantum mechanical calculations, which rule out the significant formation of the AtO2 (-) species, while leading to a hydrolysis constant of AtO(OH) in excellent agreement with experiment when the AtO(OH)2 (-) species is considered. Beyond the completion of the Pourbaix diagram of astatine, this new information is of interest for the development of (211) At radiolabeling protocols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201504403 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!