Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mechanical ventilation can improve hypoxemia, but can also cause the so-called ventilator-induced lung injury (VILI). Polyinosinic-polycytidylic acid (poly(I:C)), an analogue of natural double strand RNA virus, can induce lung inflammation. The purpose of this study was to determine whether moderate tidal volume mechanical ventilation (MTV) augments Poly(I:C)-induced lung injury, and if so, the mechanism responsible for it. Poly(I:C) (2μg/g) were instilled intratracheally in C57BL/6J wide type (WT) mice. They were then randomized to MTV (10ml/kg tidal volume) or spontaneous breath. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected 4h later for various measurements. Our results showed that MTV did not cause significant injury in normal lungs, but augmented Poly(I:C)-induced lung injury. The expression level of WNT-induced secreted protein 1 (WISP1) was consistent with lung injury, and the amplification of lung injury by MTV can be alleviated by anti-WISP1 antibody treatment. MTV further increased Poly(I:C)-induced integrin β3 expression in the lung. And co-immunoprecipitation (Co-IP) results suggested there was an interaction between WISP1 and β3. WISP1 significantly increased Poly(I:C)-induced TNF-α production in macrophages isolated from WT mice but not in macrophages isolated from β3 knock-out mice. Co-treatment with WISP1 and Poly(I:C) markedly increased the phosphorylation of extracellular signal-related kinase (ERK) in macrophages. Pretreating macrophages with an ERK inhibitor, U0126, dose-dependently antagonized WISP's synergistic effect on Poly(I:C)-induced TNF-α release. In conclusion, MTV exaggerates Poly(I:C)-induced lung injury in a WISP1 and integrin β3 dependent manner, involving, at least part, the activation of the ERK pathway. The WISP1-integrin β3 pathway could be an important target for novel therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004712 | PMC |
http://dx.doi.org/10.2119/molmed.2015.00233 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!