Background: Endophytes are microbes that inhabit internal plant tissues without causing disease. Plant microbial communities consist of large numbers of endophyte species. Understanding the functions of these endophytes is a major challenge. An important function of some endophytes is to suppress fungal pathogens. Typically, plant associated microbes are screened for anti-fungal activities in vitro using the high-throughput dual culture screen, but it is not clear whether this method correlates with the activities of these microbes in planta. Furthermore, it is not clear whether in vitro screening captures all of the microbes that show this activity inside plants. The objective of this study was to evaluate the relevance of the in vitro dual culture method for screening endophytes with anti-fungal activity.

Results: In parallel, 190 bacterial endophytes from the corn grass family (Zea) were screened for suppression of two fungal pathogens (Sclerotinia homoeocarpa and Rhizoctonia solani) using the in vitro dual culture method, and in planta using the model plant, creeping bentgrass. All endophytes that showed anti-fungal activity in planta against Sclerotinia homoeocarpa and Rhizoctonia solani (3 or 4 strains, respectively, out of 190), were captured in vitro. The in vitro and in planta screening results strongly correlated (r = 0.81 and r = 0.94 for the two pathogens, respectively).

Conclusions: Evidence was gained here that the in vitro dual culture method is a relevant method for high throughput screening of plant endophyte communities for anti-fungal activity. In our study, the method captured all of the microbes that suppressed the corresponding pathogens in planta.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715354PMC
http://dx.doi.org/10.1186/s12866-016-0623-9DOI Listing

Publication Analysis

Top Keywords

dual culture
16
vitro dual
12
culture method
12
relevance vitro
8
anti-fungal activities
8
endophyte communities
8
fungal pathogens
8
endophytes anti-fungal
8
sclerotinia homoeocarpa
8
homoeocarpa rhizoctonia
8

Similar Publications

[Selection and reflection on ecological fine manufacturing model of traditional Chinese medicine under "dual carbon" goals].

Zhongguo Zhong Yao Za Zhi

December 2024

Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Chinese Medicine Nanchang 330004, China National Key Laboratory of Classic Formula Modern Chinese Medicine Creation Nanchang 330004, China.

At present, China's traditional Chinese medicine(TCM) industry is developing rapidly with the support of modern science and technology. While promoting economic development and improving national health, it has brought multiple environmental problems. Under the "dual carbon" goals, the ecological fine manufacturing of TCM may become one of the breakthroughs for the TCM industry to practice low-carbon economy.

View Article and Find Full Text PDF

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates.

View Article and Find Full Text PDF

Scutellarein Inhibits Osteosarcoma Growth by Targeting the TLR4/TRAF6/NF-κB Pathway.

Drug Des Devel Ther

January 2025

Department of Trauma Orthopedics, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272007, People's Republic of China.

Purpose: Osteosarcoma (OS) is the most common malignant tumor associated with poor patient outcomes and a limited availability of therapeutic agents. Scutellarein (SCU) is a monomeric flavone bioactive compound with potent anti-cancer activity. However, the effects and mechanisms of SCU on the growth of OS remain unknown.

View Article and Find Full Text PDF

Background: Cancer treatments are still limited by various challenges, such as off-target drug delivery, posttreatment inflammation, and the hypoxic conditions in the tumor microenvironment; thus, the development of effective therapeutics remains highly desirable. Exosomes are extracellular vesicles with a size of 30-200 nm that have been widely applied as drug carriers over the last decade. In this study, melanoma-derived exosomes were used to develop a perfluorocarbon (PFC) drug nanocarriers loaded with indocyanine green (ICG) and camptothecin (CPT) (ICFESs) for targeted cancer photochemotherapy.

View Article and Find Full Text PDF

Dual Checkpoint Inhibition in M2 Macrophages via Anti-PD-L1 and siRNA-Loaded M1-Exosomes: Enhancing Tumor Immunity through RNA-Targeting Strategies.

Eur J Pharmacol

January 2025

Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran. Electronic address:

The interaction between a cluster of differentiation 47 (CD47) on cancer cells and signal regulatory protein alpha (SIRPα) on macrophages is thought to hinder macrophage phagocytic activity, which can be blocked by combining siRNAs targeting SIRPα (siSIRPα) with simultaneous involvement of activating receptors like FcRs (Fc receptors) anti-programmed death-ligand 1 (anti-PD-L1). For this study, M1 macrophage-derived exosomes were used to deliver the siRNAs, isolated from lipopolysaccharide (LPS)-stimulated RAW264.7 cells and electroporated with siSIRPα.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!