Background: Critical illness is a time-sensitive process which requires practitioners to process vast quantities of data and make decisions rapidly. We have developed a tool, the Checklist for Early Recognition and Treatment of Acute Illness (CERTAIN), aimed at enhancing care delivery in such situations. To determine the efficacy of CERTAIN and similar cognitive aids, we developed rubric for evaluating provider performance in a simulated medical resuscitation environments.

Methods: We recruited 18 clinicians with current valid ACLS certification for evaluation in three simulated medical scenarios designed to mimic typical medical decompensation events routinely experienced in clinical care. Subjects were stratified as experienced or novice based on prior critical care training. A checklist of critical actions was designed using face validity for each scenario to evaluate task completion and performance. Simulation sessions were video recorded and scored by two independent raters. Construct validity was assessed under the assumption that experienced clinicians should perform better than novice clinicians on each task. Reliability was assessed as percentage agreement, kappa statistics and Bland-Altman plots as appropriate.

Results: Eleven experts and seven novices completed evaluation. The overall agreement on common checklist item completion was 84.8 %. The overall model achieved face validity and was consistent with our construct, with experienced clinicians trending towards better performance compared to novices for accuracy and speed of task completion.

Conclusions: A standardized video assessment tool has potential to provide a valid and reliable method to assess 12 performances of clinicians facing simulated medical emergencies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715281PMC
http://dx.doi.org/10.1186/s12873-015-0066-xDOI Listing

Publication Analysis

Top Keywords

simulated medical
16
medical emergencies
8
face validity
8
experienced clinicians
8
medical
5
clinicians
5
development validation
4
validation clinical
4
performance
4
clinical performance
4

Similar Publications

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) is widespread and has been related to a variety of malignancies as well as infectious mononucleosis. Despite the lack of a vaccination, antiviral medications offer some therapy alternatives. The EBV BZLF1 gene significantly impacts viral replication and infection severity.

View Article and Find Full Text PDF

Recently, RNA velocity has driven a paradigmatic change in single-cell RNA sequencing (scRNA-seq) studies, allowing the reconstruction and prediction of directed trajectories in cell differentiation and state transitions. Most existing methods of dynamic modeling use ordinary differential equations (ODE) for individual genes without applying multivariate approaches. However, this modeling strategy inadequately captures the intrinsically stochastic nature of transcriptional dynamics governed by a cell-specific latent time across multiple genes, potentially leading to erroneous results.

View Article and Find Full Text PDF

Cerebellar-driven cortical dynamics can enable task acquisition, switching and consolidation.

Nat Commun

December 2024

Computational Neuroscience Unit, Intelligent Systems Labs, Faculty of Engineering, University of Bristol, Bristol, UK.

The brain must maintain a stable world model while rapidly adapting to the environment, but the underlying mechanisms are not known. Here, we posit that cortico-cerebellar loops play a key role in this process. We introduce a computational model of cerebellar networks that learn to drive cortical networks with task-outcome predictions.

View Article and Find Full Text PDF

The general control non-repressible 5 (GCN5)-related N-acetyltransferase (GNAT) SbzI, in the biosynthesis of the sulfonamide antibiotic altemicidin, catalyzes the transfer of the 2-sulfamoylacetyl (2-SA) moiety onto 6-azatetrahydroindane dinucleotide. While most GNAT superfamily utilize acyl-coenzyme A (acyl-CoA) as substrates, SbzI recognizes a carrier-protein (CP)-tethered 2-SA substrate. Moreover, SbzI is the only naturally occurring enzyme that catalyzes the direct incorporation of sulfonamide, a valuable pharmacophore in medicinal chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!