Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV) are major causes of illness among children, the elderly, and the immunocompromised. No vaccine has been licensed for protection against either of these viruses. We tested the ability of two Venezuelan equine encephalitis virus-based viral replicon particle (VEE-VRP) vaccines that express the hRSV or hMPV fusion (F) protein to confer protection against hRSV or hMPV in African green monkeys. Animals immunized with VEE-VRP vaccines developed RSV or MPV F-specific antibodies and serum neutralizing activity. Compared to control animals, immunized animals were better able to control viral load in the respiratory mucosa following challenge and had lower levels of viral genome in nasopharyngeal and bronchoalveolar lavage fluids. The high level of immunogenicity and protective efficacy induced by these vaccine candidates in nonhuman primates suggest that they hold promise for further development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731299 | PMC |
http://dx.doi.org/10.1016/j.vaccine.2015.12.045 | DOI Listing |
Clin Infect Dis
January 2025
GSK, Wavre, Belgium.
Background: In this phase 3 trial of an investigational maternal respiratory syncytial virus prefusion F protein-based vaccine (RSVPreF3-Mat), a higher rate of preterm birth was observed in the vaccine (6.8%) versus the placebo group (4.9%).
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
January 2025
The University of Texas Medical Branch at Galveston, Microbiology and Immuology, Galveston, Texas, United States.
Exposure to influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) is well-known to increase the risk of pneumonia in humans. Type I interferon (IFN-I) is a hallmark response to acute viral infections, and alveolar macrophages (AMs) constitute the first line of airway defense against opportunistic bacteria. Our study reveals that virus-induced IFN-I receptor (IFNAR1) signaling directly impairs AM-dependent antibacterial protection.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection hospitalizations in infants and poses a significantly higher risk of respiratory failure than SARS-CoV-2. The mechanisms underlying these differences remain unclear. We analyzed blood samples from infants (median age 2.
View Article and Find Full Text PDFVaccine
January 2025
State Key Laboratory of Respiratory Diseases, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Guangdong South China Vaccine Co., Ltd., Guangzhou 510530, China. Electronic address:
Human Respiratory Syncytial Virus (hRSV) is a major cause of acute lower respiratory tract infections (ALRTI) in infants, the elderly, and immunocompromised individuals. The recent approval of recombinant protein-based hRSV vaccines represents significant progress in combating hRSV. However, these vaccines utilized optimized preF ectodomain attached with an exogenous trimeric motif, which may induce immunological complications.
View Article and Find Full Text PDFClin Rev Allergy Immunol
January 2025
Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China.
The intestinal microbiota is a complex community of organisms present in the human gastrointestinal tract, some of which can produce short-chain fatty acids (SCFAs) through the fermentation of dietary fiber. SCFAs play a major role in mediating the intestinal microbiota's regulation of host immunity and intestinal homeostasis. Respiratory syncytial virus (RSV) can cause an imbalance between anti-inflammatory and proinflammatory responses in the host.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!