IPLaminator: an ImageJ plugin for automated binning and quantification of retinal lamination.

BMC Bioinformatics

Department of Biological Sciences, University of Idaho, 145 Life Science South, Moscow, ID, 83844, USA.

Published: January 2016

Background: Information in the brain is often segregated into spatially organized layers that reflect the function of the embedded circuits. This is perhaps best exemplified in the layering, or lamination, of the retinal inner plexiform layer (IPL). The neurites of the retinal ganglion, amacrine and bipolar cell subtypes that form synapses in the IPL are precisely organized in highly refined strata within the IPL. Studies focused on developmental organization and cell morphology often use this layered stratification to characterize cells and identify the function of genes in development of the retina. A current limitation to such analysis is the lack of standardized tools to quantitatively analyze this complex structure. Most previous work on neuron stratification in the IPL is qualitative and descriptive.

Results: In this study we report the development of an intuitive platform to rapidly and reproducibly assay IPL lamination. The novel ImageJ based software plugin we developed: IPLaminator, rapidly analyzes neurite stratification patterns in the retina and other neural tissues. A range of user options allows researchers to bin IPL stratification based on fixed points, such as the neurites of cholinergic amacrine cells, or to define a number of bins into which the IPL will be divided. Options to analyze tissues such as cortex were also added. Statistical analysis of the output then allows a quantitative value to be assigned to differences in laminar patterning observed in different models, genotypes or across developmental time.

Conclusion: IPLaminator is an easy to use software application that will greatly speed and standardize quantification of neuron organization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4715356PMC
http://dx.doi.org/10.1186/s12859-016-0876-1DOI Listing

Publication Analysis

Top Keywords

ipl
7
iplaminator imagej
4
imagej plugin
4
plugin automated
4
automated binning
4
binning quantification
4
quantification retinal
4
retinal lamination
4
lamination background
4
background brain
4

Similar Publications

The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.

View Article and Find Full Text PDF

Anatomy-driven segmentation of parafoveal optical coherence tomography (OCT) measures may improve associations with clinical outcomes in multiple sclerosis.

J Neurol

January 2025

Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.

Background: Previous investigations on optical coherence tomography (OCT) in multiple sclerosis (MS) focused on generalizable macular and peri-papillary regions without considering the anatomic variations of the retinal layer thickness.

Objective: This study aimed to assess the utility of parafoveal retinal layer thickness measured by OCT, underscoring its relationships with clinical outcomes in MS.

Methods: In this cross-sectional study, 214 people with MS (pwMS) and 57 age- and sex-matched healthy controls (HCs) were enrolled.

View Article and Find Full Text PDF

Purpose: To evaluate the efficacy and safety of intense pulsed light (IPL) combined with meibomian gland expression (MGX) for the treatment of dry eye disease and meibomian gland dysfunction associated with chronic Stevens-Johnson syndrome and toxic epidermal necrolysis.

Methods: This prospective noncomparative interventional study included 29 patients (58 eyes) who underwent 3 sessions of IPL and MGX at 2-week intervals. Subjective symptoms (ocular surface disease index score) and objective dry eye tests: matrix metalloproteinase 9, tear meniscus height, bulbar redness score, tear film lipid layer thickness (LLT), Schirmer I test, conjunctival and corneal staining, meibomian gland loss, MGX score [meibomian gland score (MGS)], and tear break-up time were assessed at the baseline and after 4, 8, and 12 weeks.

View Article and Find Full Text PDF

: Objective: To discuss therapeutic outcomes in patients with symptomatic near-narrow internal auditory canal (NNIAC). : We retrospectively analyzed the records of 26 symptomatic patients diagnosed with NNIAC, who had been treated with anti-epileptic drugs. In addition to clinical and radiological data, we recorded I-III latencies of auditory brainstem responses prior to and after medical therapy.

View Article and Find Full Text PDF

To compare the long-term efficacy and safety of intense pulsed light (IPL) treatments using a 590-nm and an acne filter. In this prospective, randomized, paired-eye trial study, 30 patients with moderate and severe meibomian gland dysfunction (MGD) were followed up for at least one month after their last treatment. Group A received IPL treatment with an acne filter, a type of notch filter that blocks wavelengths between 600 and 800 nm, allowing IPL to emit wavelengths between 400-600 nm and 800-1200 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!