An attenuated virus vaccine appears safe to the central nervous system of rainbow trout (Oncorhynchus mykiss) after intranasal delivery.

Fish Shellfish Immunol

Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM, USA. Electronic address:

Published: February 2016

Nasal vaccines are very effective but the olfactory organ provides direct access of antigens to the brain. Infectious hematopoietic necrosis virus (IHNV) is known to cause high mortalities in salmonids. The purpose of this study is to evaluate the safety of a live attenuated IHNV nasal (I.N) vaccine in rainbow trout (Oncorhynchus mykiss). In the olfactory organ, the vaccine was detected 1 and 4 days after primary I.N vaccination but not in the intramuscular (i.m) or control groups. In the brain, IHNV was detected by RT-qPCR 4 and 21 days after i.m primary vaccination. One i.m and one I.N vaccinated trout were positive at days 4 and 28 days post-boost, respectively. Presence of IHNV in the brain of i.m vaccinated fish correlated with moderate increases in IL-1β and TNF-α expression in this tissue. These results demonstrate that IHNV vaccine lasts for 4 days in the local nasal environment and that nasal vaccination appears to be safe to the CNS of rainbow trout.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4871134PMC
http://dx.doi.org/10.1016/j.fsi.2016.01.006DOI Listing

Publication Analysis

Top Keywords

rainbow trout
12
appears safe
8
trout oncorhynchus
8
oncorhynchus mykiss
8
olfactory organ
8
days primary
8
primary vaccination
8
ihnv
5
days
5
attenuated virus
4

Similar Publications

Vibriosis caused by Vibrio anguillarum has been an important bacterial disease in cultured rainbow trout (Oncorhynchus mykiss). In the present study, we evaluated the protective efficacy of a vaccine that consists of formalin-killed (FK) V. anguillarum and the alr genes knockout auxotrophic-live (AL) V.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are highly conserved endogenous non-coding RNAs that play a crucial role in fish immune response by regulating gene expression at the post-transcriptional level. In recent years, the viral diseases caused by infectious hematopoietic necrosis virus (IHNV) have caused significant economic losses in rainbow trout (Oncorhynchus mykiss) aquaculture, whereas the immune regulatory mechanisms of miRNAs involved in rainbow trout resistance to IHNV infection remains largely undefined. In this study, we analyzed the structural characteristics of Oncorhynchus mykiss tumor necrosis factor receptor-associated factor 3 (OmTRAF3) by bioinformatics software and explored the molecular mechanism of miR-203-3p in rainbow trout resistance to IHNV by regulating OmTRAF3 in vivo and in vitro.

View Article and Find Full Text PDF

Environmental exposure to single and combined ZnO and TiO nanoparticles: Implications for rainbow trout gill immune functions and microbiota.

Chemosphere

January 2025

Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium.

ZnO and TiO nanoparticles (NPs) are widely employed for their antibacterial properties, but their potential environmental impact is raising concerns. This study aimed to assess their single and combined effects at environmentally relevant concentrations (210 μg L) on rainbow trout (Oncorhynchus mykiss) gills microbiota and immune functions. 16S rRNA gene sequencing performed after 5 and 28 days of exposure suggests that TiO NPs had a more immediate impact on bacterial diversity, while prolonged exposure to the mixture altered community composition.

View Article and Find Full Text PDF

Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.

View Article and Find Full Text PDF

Performance Responses and Fillet Quality of Rainbow Trout () to Increasing Addition Levels of Dietary Supplementation of Guanidinoacetic Acid.

Animals (Basel)

January 2025

Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, Department of Agrobiotechnology, BOKU University, 1190 Vienna, Austria.

Guanidinoacetic acid (GAA) plays an important role in cellular energy use and protein synthesis. The objectives of this study were to determine the optimal level of dietary GAA regarding the growth performance and fillet characteristics of rainbow trout (). A total of 300 trout (initial weight, 66.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!