ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction underlie apoptosis induced by resveratrol and arsenic trioxide in A549 cells.

Chem Biol Interact

Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, PR China. Electronic address:

Published: February 2016

Although it is well documented that endoplasmic reticulum (ER) stress and mitochondrial dysfunction are associated with apoptosis, little is known about whether they are involved in the apoptotic cell death induced by resveratrol and arsenic trioxide (ATO) combination. In this study, we identified a series of sensitization effects of resveratrol on human lung adenocarcinoma A549 cells to ATO treatment, with the combination index (CI) of resveratrol and ATO less than 1. Then, we demonstrated that ER stress was contributed to this synergistic effect, which was manifested by increased the expression levels of ER stress hallmarks, including 78-kDa glucose-regulated protein (GRP 78), caspase 12 and C/EBP-homologous protein (CHOP), In addition, mitochondrial dysfunction was observed after exposure of A549 cells to resveratrol or/and ATO, which was displayed by some alterations of mitochondria-related events, such as loss of mitochondrial membrane potential, cytochrome c release and changes of Bax and Bcl-2 expressions. Our results further demonstrated that resveratrol and ATO-induced ER stress and mitochondrial dysfunction were mediated by reactive oxygen species (ROS), showing that pre-treatment of N-acetyl-l-cysteine, a potent ROS scavenger, restored the ER stress and mitochondrial dysfunction in cells co-treated with resveratrol and ATO, thereby leading to the reduction of the apoptosis. Collectively, these results clearly suggest that ROS-mediated ER stress and mitochondrial dysfunction were involved in the apoptosis induced by resveratrol and ATO in A549 cells, which provides a novel insight into the molecular mechanisms of resveratrol-mediated ATO-sensitization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2016.01.005DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
24
stress mitochondrial
20
induced resveratrol
12
resveratrol ato
12
endoplasmic reticulum
8
reticulum stress
8
apoptosis induced
8
resveratrol
8
resveratrol arsenic
8
arsenic trioxide
8

Similar Publications

Photobiomodulation (PBM) therapy, a non-thermal light therapy using nonionizing light sources, has shown therapeutic potential across diverse biological processes, including aging and age-associated diseases. In 2023, scientists from the National Institute on Aging (NIA) Intramural and Extramural programs convened a workshop on the topic of PBM to discuss various proposed mechanisms of PBM action, including the stimulation of mitochondrial cytochrome C oxidase, modulation of cell membrane transporters and receptors, and the activation of transforming growth factor-β1. They also reviewed potential therapeutic applications of PBM across a range of conditions, including cardiovascular disease, retinal disease, Parkinson's disease, and cognitive impairment.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction has been demonstrated to be an important hallmark of sarcopenia, yet its specific mechanism remains obscure. In this study, mitochondrial-related genes were used as instrumental variables to proxy for mitochondrial dysfunction, and summary data for sarcopenia-related traits were used as outcomes to examine their genetic association.

Methods: A total of 1,136 mitochondrial-related genes from the human MitoCarta3.

View Article and Find Full Text PDF

Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.

View Article and Find Full Text PDF

mtSTAT3 suppresses rheumatoid arthritis by regulating Th17 and synovial fibroblast inflammatory cell death with IL-17-mediated autophagy dysfunction.

Exp Mol Med

January 2025

Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Th17 cells are activated by STAT3 factors in the nucleus, and these factors are correlated with the pathologic progression of rheumatoid arthritis (RA). Recent studies have demonstrated the presence of STAT3 in mitochondria, but its function is unclear. We investigated the novel role of mitochondrial STAT3 (mitoSTAT3) in Th17 cells and fibroblast-like synoviocytes (FLSs) and analyzed the correlation of mitoSTAT3 with RA.

View Article and Find Full Text PDF

20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca signaling in H9c2 cells.

Sci Rep

January 2025

Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.

In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!