Controlling Proton Conductivity with Light: A Scheme Based on Photoacid Doping of Materials.

J Phys Chem B

Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States.

Published: February 2016

Transducing light energy to changes in material properties is central to a large range of functional materials, including those used in light harvesting. In conventional semiconductors, photoconductivity arises due to generation of mobile electrons or holes with light. Here we demonstrate, to our knowledge for the first time, an analogue of this effect for protons in an organic polymer solution and in water. We show that when a material is doped with photoacids, light excitation generates extra mobile protons that change the low-frequency conductivity of the material. We measure such change both in poly(ethylene glycol) (PEG) and in water sandwiched between two transparent electrodes and doped with a well-known photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS). The complex impedance of the material is measured over a range of 0.1 Hz-1 MHz in both the presence and absence of light, and it is found that shining light changes the low frequency impedance significantly. We model the impedance spectra of the material with a minimal circuit composed of a diffusive impedance (Warburg element), a parallel capacitance, and a resistance. Fitting the light and dark impedance spectra to the model reveals that light reduces the low-frequency diffusive impedance of the material, which is consistent with generation of extra free carriers by light. We further suggest that the light-induced conductivity change arises mainly due to those photoreleased protons that manage to escape the zone of influence of the parent ion and avoid recapture. Such escape is more likely in materials with larger diffusion coefficient for protons and shorter electrostatic screening lengths for the parent ion. This explanation is consistent with our observed differences in the photoconductivity of solution of HPTS in water and in PEG. We anticipate that this scheme can be employed in protonic circuits where direct transduction of energy from light to protonic gradients or protonic currents is necessary. This work will also serve as a basis for using photoacids as optical handles for characterizing the molecular mechanisms of conductivity in proton conducting materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.6b00370DOI Listing

Publication Analysis

Top Keywords

light
11
impedance material
8
impedance spectra
8
diffusive impedance
8
parent ion
8
material
6
impedance
6
controlling proton
4
conductivity
4
proton conductivity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!