Background: It is known that microRNAs (miRNAs) are a class of small, non-coding RNAs that act as key regulators in various physiological and pathological processes. However, the regulatory mechanisms involving miRNAs in prostate cancer remain largely unknown. Here, we found that miR-103 is down-regulated in prostate cancer and closely associated with tumor proliferation and migration. Our objective was to explore the role of the miR-103 in prostate cancer.

Methods: In this study, we measured miR-103 level using real-time polymerase chain reaction in the human prostate cancer cell lines, including PC-3, LNCap, 22Rv1, DU145, and the normal prostate epithelium cell line RWPE-1, a total of 25 pairs of primary prostate cancer tissues and adjacent non-cancerous tissues (NCTs) were measured also. In addition, over-expression of miR-103 in prostate cancer cell lines to determine the role of miR-103 in prostate cancer.

Results: We found that miR-103 is down-regulated in prostate cancer and closely associated with tumor proliferation and migration. In addition, over-expression of miR-103 apparently inhibits prostate cancer cell proliferation and migration in vitro. Gain-of-function in vitro experiments further show that miR-103 mimics significantly inhibited prostate cancer cell proliferation, invasion and increase the cell cycle in G1 phase, while promoted cell apoptosis. Subsequent dual-luciferase reporter assay identified one of the proto-oncogene PDCD10 as direct target of miR-103.

Conclusions: Therefore, our data collectively demonstrate that miR-103 is a proto-oncogene miRNA that can suppress prostate cancer proliferation and migration by down-regulating the oncogene PDCD10, indicating that miR-103 may represent a new potential diagnostic and therapeutic target for prostate cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.23143DOI Listing

Publication Analysis

Top Keywords

prostate cancer
44
proliferation migration
16
cancer cell
16
prostate
14
cell proliferation
12
mir-103 prostate
12
cancer
11
mir-103
10
cell
8
mir-103 down-regulated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!