Bats frequently roost in historic churches, and these colonies are of considerable conservation value. Inside churches, bat droppings and urine can cause damage to the historic fabric of the building and to items of cultural significance. In extreme cases, large quantities of droppings can restrict the use of a church for worship and/or other community functions. In the United Kingdom, bats and their roosts are protected by law, and striking a balance between conserving the natural and cultural heritage can be a significant challenge. We investigated mitigation strategies that could be employed in churches and other historic buildings to alleviate problems caused by bats without adversely affecting their welfare or conservation status. We used a combination of artificial roost provision and deterrence at churches in Norfolk, England, where significant maternity colonies of Natterer's bats Myotis nattereri damage church features. Radio-tracking data and population modelling showed that excluding M. nattereri from churches is likely to have a negative impact on their welfare and conservation status, but that judicious use of deterrents, especially high intensity ultrasound, can mitigate problems caused by bats. We show that deterrence can be used to move bats humanely from specific roosting sites within a church and limit the spread of droppings and urine so that problems to congregations and damage to cultural heritage can be much reduced. In addition, construction of bespoke roost spaces within churches can allow bats to continue to roost within the fabric of the building without flying in the church interior. We highlight that deterrence has the potential to cause serious harm to M. nattereri populations if not used judiciously, and so the effects of deterrents will need careful monitoring, and their use needs strict regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714818 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146782 | PLOS |
Animals (Basel)
January 2025
Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
During an examination of various specimens previously collected from different locations at different times, we discovered four specimens that had been collected in October and December 2023 from the Huanglianshan National Nature Reserve, Lvchun, Yunnan, China. Morphologically, these specimens can be distinguished from and other congeneric species based on a combination of body size, hair distribution, fur colour, and skull and teeth characteristics; molecularly, an analysis of Cyt and COI gene sequences showed that these specimens form a monophyletic group with with high posterior probability and bootstrap support values. Furthermore, the genetic distance between our specimens and was greater than the minimum threshold for interspecific differentiation, indicating that they are phylogenetically close but have diverged.
View Article and Find Full Text PDFPLoS One
January 2025
Instituto Tecnológico Vale (ITV), Belém, Pará, Brazil.
Individual movements of bats are triggered by their life requirements, limited by their recognition of the environment and risks of moving, and mediated by habitat selection. Mining adds fragmentation and heterogeneity to landscapes, with poorly understood consequences to the life activities of the bats. Cave dwelling bats spend most of their life cycles within caves, and as they constantly forage in external landscapes, their contribution in the input of organic matter to the caves is of paramount importance to the subterranean biodiversity.
View Article and Find Full Text PDFPLoS One
January 2025
Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Ciudad de México, México.
Tequila bats (genus Leptonycteris) have gained attention for their critical role in pollinating different plant species, especially Agave spp. and columnar cacti. Leptonycteris nivalis is the largest nectar-feeding bat in the Americas, and the females exhibit migratory behavior during the breeding season.
View Article and Find Full Text PDFZookeys
December 2024
Grupo de Investigación GEBIOME, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10, 170004, Manizales, Caldas, Colombia Universidad de Caldas Manizales Colombia.
Sci Rep
January 2025
Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, 10315, Berlin, Germany.
Wind turbines used to combat climate change pose a green-green dilemma when endangered and protected wildlife species are killed by collisions with rotating blades. Here, we investigated the geographic origin of bats killed by wind turbines along an east-west transect in France to determine the spatial extent of this conflict in Western Europe. We analysed stable hydrogen isotopes in the fur keratin of 60 common noctule bats (Nyctalus noctula) killed by wind turbines during summer migration in four regions of France to predict their geographic origin using models based on precipitation isoscapes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!