Rivers and streams in New Zealand are natural with free access and used by many people for swimming and fishing. However, pastoral farming with free grazing animals is a common land use in New Zealand and faecal microorganisms from them often end up in waterways. These microorganisms can seriously affect human and animal health if ingested. This paper describes spatial modeling using GIS of Escherichia coli sources in a large catchment (350 000 ha), the Ruamahanga. By examining the pathway of water over and through soils, it is possible to determine whether E. coli sources are connected to waterways or not. The map of E. coli sources connected to waterways provides useful context to those setting water quality limits. This approach avoids the complexity of modeling the fate and transport of E. coli in waterways, yet still permits the assessment of catchment-wide mitigation and best management practice. Fencing of waterways would minimize E. coli sources directly defecated to water and would reduce total E. coli sources by approximately 35%. Introduction of dung beetles would minimize sources connected to waterways by overland flow and would reduce total E. coli sources by approximately 35%. Construction of dairy effluent ponds would minimize sources connected to waterways through high bypass flow in soils and would reduce total E. coli sources by approximately 25%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5b05167DOI Listing

Publication Analysis

Top Keywords

coli sources
32
sources connected
20
connected waterways
20
reduce total
12
total coli
12
sources
10
coli
9
escherichia coli
8
waterways
8
sources 35%
8

Similar Publications

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

The designated uses of lakes connect individuals to the natural environment, but some can expose recreational users to pathogens associated with fecal contamination that cause waterborne illnesses. Routine monitoring of fecal indicators in surface waters helps identify and track sources of fecal contamination to protect public health. We examined fecal indicators ( and enterococci) and factors influencing recreational freshwater quality.

View Article and Find Full Text PDF

Extended-spectrum beta-lactamase (ESBL) and carbapenemase-producing (CP) gram-negative bacteria are the major public health concerns. Gowns used by healthcare workers (HCWs) in daily practice are a source of hospital-acquired infections in hospital settings. The study aimed to determine the prevalence of extended-spectrum beta-lactamase and carbapenemase-producing gram-negative bacteria from gowns of healthcare workers at Debre Berhan Comprehensive Specialized Hospital, Amhara Regional State, Ethiopia.

View Article and Find Full Text PDF

Epidemiology and Resistance Profiles of Bacteria Isolated from Blood Samples in Septic Patients at Emergency Department Admission: A 6-year Single Center Retrospective Analysis from Northern Italy.

J Glob Antimicrob Resist

January 2025

Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.

Objectives: This study aimed to investigate the microbiological and clinical heterogeneity of community-onset bloodstream infections (BSIs) and identify features to support targeted empirical antibiotic therapy in the Emergency Department (ED).

Methods: Clinical and microbiological data from 992 BSI cases (1,135 isolates) diagnosed within 24 hours of ED admission at IRCCS Humanitas Research Hospital, Milan, Italy (January 2015-June 2022), were analyzed. Drug resistance was interpreted using EUCAST-2023.

View Article and Find Full Text PDF

Plasmids play a vital role in synthetic biology by enabling the introduction and expression of foreign genes in various organisms, thereby facilitating the construction of biological circuits and pathways within and between cell populations. For many applications, maintaining functional plasmids without antibiotic selection is critical. This study introduces an open-hardware-based microfluidic workflow for analyzing plasmid retention by culturing single cells in gel microdroplets and quantifying microcolonies using fluorescence microscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!