DNA demethylation caused by 5-Aza-2'-deoxycytidine induces mitotic alterations and aneuploidy.

Oncotarget

Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy.

Published: January 2016

Aneuploidy, the unbalanced number of chromosomes in a cell, is considered a prevalent form of genetic instability and is largely acknowledged as a condition implicated in tumorigenesis. Epigenetic alterations like DNA hypomethylation have been correlated with cancer initiation/progression. Furthermore, a growing body of evidence suggests the involvement of epigenome-wide disruption as a cause of global DNA hypomethylation in aneuploidy generation.Here, we report that the DNA hypomethylating drug 5-aza-2'-deoxycytidine (DAC), affects the correct ploidy of nearly diploid HCT-116 human cells by altering the methylation pattern of the chromosomes. Specifically, we show that a DAC-induced reduction of 5-Methyl Cytosine at the pericentromeric region of chromosomes correlates with aneuploidy and mitotic defects.Our results suggest that DNA hypomethylation leads to aneuploidy by altering the DNA methylation landscape at the centromere that is necessary to ensure proper chromosomes segregation by recruiting the proteins necessary to build up a functional kinetochore.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4826165PMC
http://dx.doi.org/10.18632/oncotarget.6897DOI Listing

Publication Analysis

Top Keywords

dna hypomethylation
12
dna
6
aneuploidy
5
dna demethylation
4
demethylation caused
4
caused 5-aza-2'-deoxycytidine
4
5-aza-2'-deoxycytidine induces
4
induces mitotic
4
mitotic alterations
4
alterations aneuploidy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!