Background And Objectives: Not all impaired listeners may have the same speech perception ability although they will have similar pure-tone threshold and configuration. For this reason, the present study analyzes error patterns in the hearing-impaired compared to normal hearing (NH) listeners as a function of signal-to-noise ratio (SNR).
Subjects And Methods: Forty-four adults participated: 10 listeners with NH, 20 hearing aids (HA) users and 14 cochlear implants (CI) users. The Korean standardized monosyllables were presented as the stimuli in quiet and three different SNRs. Total error patterns were classified into types of substitution, omission, addition, fail, and no response, using stacked bar plots.
Results: Total error percent for the three groups significantly increased as the SNRs decreased. For error pattern analysis, the NH group showed substitution errors dominantly regardless of the SNRs compared to the other groups. Both the HA and CI groups had substitution errors that declined, while no response errors appeared as the SNRs increased. The CI group was characterized by lower substitution and higher fail errors than did the HA group. Substitutions of initial and final phonemes in the HA and CI groups were limited by place of articulation errors. However, the HA group had missed consonant place cues, such as formant transitions and stop consonant bursts, whereas the CI group usually had limited confusions of nasal consonants with low frequency characteristics. Interestingly, all three groups showed /k/ addition in the final phoneme, a trend that magnified as noise increased.
Conclusions: The HA and CI groups had their unique error patterns even though the aided thresholds of the two groups were similar. We expect that the results of this study will focus on high error patterns in auditory training of hearing-impaired listeners, resulting in reducing those errors and improving their speech perception ability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4704547 | PMC |
http://dx.doi.org/10.7874/jao.2015.19.3.144 | DOI Listing |
Exp Brain Res
January 2025
Department of Kinesiology, Michigan State University, 308 W Circle Dr, East Lansing, USA.
A characteristic feature of redundancy in the motor system is the ability to compensate for the failure of individual motor elements without affecting task performance. In this study, we examined the pattern and variability in error compensation between motor elements during a virtual task. Participants performed a redundant cursor control task with finger movements.
View Article and Find Full Text PDFBehav Res Methods
January 2025
Department of Cognitive Sciences, University of California, 92697, Irvine, CA, USA.
It is popular to study individual differences in cognition with experimental tasks, and the main goal of such approaches is to analyze the pattern of correlations across a battery of tasks and measures. One difficulty is that experimental tasks are often low in reliability as effects are small relative to trial-by-trial variability. Consequently, it remains difficult to accurately estimate correlations.
View Article and Find Full Text PDFSci Rep
January 2025
Colloid Chemistry, Department of Chemistry, University of Konstanz, Universitaetsstrasse 10, 78464, Konstanz, Germany.
Complex structures can be understood as compositions of smaller, more basic elements. The characterization of these structures requires an analysis of their constituents and their spatial configuration. Examples can be found in systems as diverse as galaxies, alloys, living tissues, cells, and even nanoparticles.
View Article and Find Full Text PDFSci Rep
January 2025
Research and Development, Aesculap AG, Tuttlingen, Germany.
In clinical movement biomechanics, kinematic measurements are collected to characterise the motion of articulating joints and investigate how different factors influence movement patterns. Representative time-series signals are calculated to encapsulate (complex and multidimensional) kinematic datasets succinctly. Exacerbated by numerous difficulties to consistently define joint coordinate frames, the influence of local frame orientation and position on the characteristics of the resultant kinematic signals has been previously proven to be a major limitation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronics and Communication Engineering, Sri Ramakrishna Institute of Technology, Coimbatore, Tamilnadu, India, 641010.
The global spread of COVID-19, particularly through cough symptoms, necessitates efficient diagnostic tools. COVID-19 patients exhibit unique cough sound patterns distinguishable from other respiratory conditions. This study proposes an advanced framework to detect and predict COVID-19 using deep learning from cough audio signals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!