Inflammatory cascades and mechanisms are ubiquitous during host responses to various types of insult. Biological models and interventional strategies have been devised as an effort to better understand and modulate inflammation-driven injuries. Amongst those the two-hit model stands as a plausible and intuitive framework that explains some of the most frequent clinical outcomes seen in injuries like trauma and sepsis. This model states that a first hit serves as a priming event upon which sequential insults can build on, culminating on maladaptive inflammatory responses. On a different front, ischemic preconditioning (IPC) has risen to light as a readily applicable tool for modulating the inflammatory response to ischemia and reperfusion. The idea is that mild ischemic insults, either remote or local, can cause organs and tissues to be more resilient to further ischemic insults. This seemingly contradictory role that the two models attribute to a first inflammatory hit, as priming in the former and protective in the latter, has set these two theories on opposing corners of the literature. The present review tries to reconcile both models by showing that, rather than debunking each other, each framework offers unique insights in understanding and modulating inflammation-related injuries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4684872 | PMC |
http://dx.doi.org/10.1155/2015/697193 | DOI Listing |
Sci Rep
January 2025
Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Mikicho, Kidagun, 761-0793, Kagawa, Japan.
Acute kidney injury (AKI) has been reported to occur in 30-70% of asphyxiated neonates. Hydrogen (H) gas became a major research focus in neonatal medicine after the identification of its robust antioxidative properties. However, the ability of H gas to ameliorate AKI is unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
GABA receptors mediate prolonged inhibition in the brain and are important for keeping neuronal excitation and inhibition in a healthy balance. However, under excitotoxic/ischemic conditions, GABA receptors are downregulated by dysregulated endocytic trafficking and can no longer counteract the severely enhanced excitation, eventually triggering neuronal death. Recently, we developed interfering peptides targeting protein-protein interactions involved in downregulating the receptors.
View Article and Find Full Text PDFJ Dev Orig Health Dis
January 2025
School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
Preterm birth exposes the neonate to hypoxic-ischaemic and excitotoxic insults that impair neurodevelopment and are magnified by the premature loss of placentally supplied, inhibitory neurosteroids. The cerebellum is a neuronally dense brain region, which undergoes critical periods of development during late gestation, when preterm births frequently occur. We propose that neurosteroid replacement therapy using tiagabine and zuranolone will protect the cerebellum against preterm-associated insults.
View Article and Find Full Text PDFBrain Sci
December 2024
Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
Objectives: Dementia is becoming a major health problem in the world, and chronic brain ischemia is an established important risk factor in predisposing this disease. Astrocytes, as one major part of the blood-brain barrier (BBB), are activated during chronic cerebral blood flow hypoperfusion. Reactive astrocytes have been classified into phenotype pro-inflammatory type A1 or neuroprotective type A2.
View Article and Find Full Text PDFEpilepsia
December 2024
Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
Objective: Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!