Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deleterious epistatic interactions in plant inter- and intraspecific hybrids can cause a phenomenon known as hybrid necrosis, characterized by a typical seedling phenotype whose main distinguishing features are dwarfism, tissue necrosis and in some cases lethality. Identification of the chromosome regions associated with this type of incompatibility is important not only to increase our understanding of the evolutionary diversification that led to speciation but also for breeding purposes. Development of molecular markers linked to the lethal genes will allow breeders to avoid incompatible inbred combinations that could affect the expression of important agronomic tratis co-segregating with these genes. Although hybrid necrosis has been reported in several plant taxa, including Rosaceae species, this phenomenon has not been described previously in pear. In the interspecific pear population resulting from a cross between PEAR3 (Pyrus bretschneideri × Pyrus communis) and 'Moonglow' (P. communis), we observed two types of hybrid necrosis, expressed at different stages of plant development. Using a combination of previously mapped and newly developed genetic markers, we identified three chromosome regions associated with these two types of lethality, which were genetically independent. One type resulted from a negative epistatic interaction between a locus on linkage group 5 (LG5) of PEAR3 and a locus on LG1 of 'Moonglow', while the second type was due to a gene that maps to LG2 of PEAR3 and which either acts alone or more probably interacts with another gene of unknown location inherited from 'Moonglow'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702180 | PMC |
http://dx.doi.org/10.1038/hortres.2015.64 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!