We are interested in the relationship between the cytoskeleton and the organization of polarized cell morphology. We show here that the growth cones of hippocampal neurons in culture are specifically stained by a monoclonal antibody called 13H9. In other systems, the antigen recognized by 13H9 is associated with marginal bands of chicken erythrocytes and shows properties of both microtubule-and microfilament-associated proteins (Birgbauer, E., and F. Solomon. 1989 J. Cell Biol. 109:1609-1620). This dual nature is manifest in hippocampal neurons as well. At early stages after plating, the antibody stains the circumferential lamellipodia that mediate initial cell spreading. As processes emerge, 13H9 staining is heavily concentrated in the distal regions of growth cones, particularly in lamellipodial fans. In these cells, the 13H9 staining is complementary to the localization of assembled microtubules. It colocalizes partially, but not entirely, with phalloidin staining of assembled actin. Incubation with nocodazole rapidly induces microtubule depolymerization, which proceeds in the distal-to-proximal direction in the processes. At the same time, a rapid and dramatic redistribution of the 13H9 staining occurs; it delocalizes along the axon shaft, becoming clearly distinct from the phalloidin staining and always remaining distal to the receding front of assembled microtubules. After longer times without assembled microtubules, no staining of 13H9 can be detected. Removal of the nocodazole allows the microtubules to reform, in an ordered proximal-to-distal fashion. The 13H9 immunoreactivity also reappears, but only in the growth cones, not in any intermediate positions along the axon, and only after the reformation of microtubules is complete. The results indicate that the antigen recognized by 13H9 is highly concentrated in growth cones, closely associated with polymerized actin, and that its proper localization depends upon intact microtubules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2115791 | PMC |
http://dx.doi.org/10.1083/jcb.109.4.1621 | DOI Listing |
J Neurochem
January 2025
Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
The guidance cue netrin-1 promotes both growth cone attraction and growth cone repulsion. How netrin-1 elicits diverse axonal responses, beyond engaging the netrin receptor DCC and UNC5 family members, remains elusive. Here, we demonstrate that murine netrin-1 induces biphasic axonal responses in cortical neurons: Attraction at lower concentrations and repulsion at higher concentrations using both a microfluidic-based netrin-1 gradient and bath application of netrin-1.
View Article and Find Full Text PDFFront Microbiol
January 2025
Centre Armand Frappier Sante Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada.
The minimal sampling effort required to report the microbiome composition of insect surveyed in natural environment is often based on empirical or logistical constraints. This question was addressed with the white pine cone beetle, (Schwarz), a devastating insect pest of seed orchards. It attacks and stop the growth of the cones within which it will spend its life, on the ground.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America.
Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia.
Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
Netrin-1, an essential extracellular protein, has gained significant attention due to its pivotal role in guiding axon and cell migration during embryonic development. The fundamental significance of netrin-1 in developmental biology is reflected in its high conservation across different species as a part of the netrin family. The bifunctional nature of netrin-1 demonstrates its functional versatility, as it can function as either a repellent or an attractant according to the context and the expressed receptors on the target cells including the deleted in colorectal cancer (DCC), the uncoordinated-5 (UNC5), DSCAM, Neogenin-1, Adenosine A2b and Draxin receptors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!