Current molecular genetic understanding of the metabolically active persistent infection state of Chlamydia trachomatis and Chlamydia pneumoniae in the synovium in patients with arthritis and spondyloarthritis favors a causal relationship. Here, we examine how adequately the accepted criteria for that etiologic relationship are fulfilled, emphasizing the situation in which these microorganisms cannot be cultivated by standard or other means. We suggest that this unusual situation of causality by chlamydiae in rheumatic disease requires establishment of a consensus regarding microorganism-specific terminology as well as the development of new diagnostic and classification criteria. Recent studies demonstrate the value of molecular testing for diagnosis of reactive arthritis, undifferentiated spondyloarthritis, and undifferentiated arthritis caused by C. trachomatis and C. pneumoniae in clinical practice. Data regarding combination antibiotic therapy is consistent with the causative role of chlamydiae for these diseases. Observations of multiple intra-articular coinfections require more research to understand the implications and to respond to them.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11926-015-0559-3DOI Listing

Publication Analysis

Top Keywords

causality chlamydiae
8
arthritis spondyloarthritis
8
arthritis
4
chlamydiae arthritis
4
spondyloarthritis plea
4
plea increased
4
increased translational
4
translational current
4
current molecular
4
molecular genetic
4

Similar Publications

Background: We aimed to determine the household distribution and viability of Chlamydia trachomatis (Ct) from the eyes, face, and hands during the initial two visits of a year-long fortnightly cohort study in geographically defined adjacent households.

Methods/findings: We enrolled 298 individuals from 68 neighbouring households in Shashemene Woreda, Oromia, Ethiopia. All individuals above 2 years of age residing in these households were examined for signs of trachoma.

View Article and Find Full Text PDF

Background: The primary purpose of this study was to detect the pathogen species using targeted next-generation sequencing (tNGS) to investigate the characteristics of community-acquired pneumonia (CAP)-related pathogens in children in Xiantao city, Hubei province, China.

Methods: A total of 1,527 children with CAP were prospectively recruited from our hospital between May 2022 and February 2023. Information on age and sex was collected from the medical records.

View Article and Find Full Text PDF

Whole-genome automated assembly pipeline for strains from reference, and clinical samples using the integrated CtGAP pipeline.

NAR Genom Bioinform

March 2025

Departments of Medicine and Pediatrics, Division of Infectious Diseases and Global Health, University of California San Francisco School of Medicine, 550 16th Street, 4th Floor Mission Hall, San Francisco, CA, 94158, USA.

Whole genome sequencing (WGS) is pivotal for the molecular characterization of ()-the leading bacterial cause of sexually transmitted infections and infectious blindness worldwide. WGS can inform epidemiologic, public health and outbreak investigations of these human-restricted pathogens. However, challenges persist in generating high-quality genomes for downstream analyses given its obligate intracellular nature and difficulty with propagation.

View Article and Find Full Text PDF

Characterising functional diversity is a vital element to understanding a species' immune function, yet many immunogenetic studies in non-model organisms tend to focus on only one or two gene families such as the major histocompatibility complex (MHC) or toll-like receptors (TLR). Another interesting component of the eukaryotic innate immune system is the antimicrobial peptides (AMPs). The two major groups of mammalian AMPs are cathelicidins and defensins, with the former having undergone species-specific expansions in marsupials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!