Replication characteristics of equine herpesvirus 1 and equine herpesvirus 3: comparative analysis using ex vivo tissue cultures.

Vet Res

Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.

Published: January 2016

Replication kinetics and invasion characteristics of equine herpesvirus-1 and -3 (EHV-1/-3) in nasal and vaginal mucosae were compared using explants. The explants were cultured during 96 h with little change in viability. The tissues were inoculated with EHV-1 03P37 (neuropathogenic), 97P70 (abortigenic) and EHV-3 04P57, collected at 0, 24, 48 and 72 h post inoculation (pi) and stained for viral antigens. Both EHV-1 and EHV-3 replicated in a plaquewise manner. The plaques were already observed at 24 h pi, their size increased over time and did not directly cross the basement membrane (BM). However, EHV-1 infected the monocytic cells (MC) and hijacked these cells to invade the lamina propria. In contrast, EHV-3 replication was fully restricted to epithelial cells; the virus did not breach the BM via a direct cell-to-cell spread nor used infected MC. EHV-1-induced plaques were larger in nasal mucosa compared to vaginal mucosa. The opposite was found for EHV-3-induced plaques. Both EHV-1 strains replicated with comparable kinetics in nasal mucosa. However, the extent of replication of the abortigenic strain in vaginal mucosa was significantly higher than that of the neuropathogenic strain. Two-to-five-fold lower numbers of EHV-1-infected MC underneath the BM were found in vaginal mucosa than in nasal mucosa. Our study has shown that (i) EHV-1 has developed in evolution a predisposition for respiratory mucosa and EHV-3 for vaginal mucosa, (ii) abortigenic EHV-1 replicates better in vaginal mucosa than neuropathogenic EHV-1 and (iii) EHV-3 demonstrated a strict epithelial tropism whereas EHV-1 in addition hijacked MC to invade the lamina propria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4714513PMC
http://dx.doi.org/10.1186/s13567-016-0305-5DOI Listing

Publication Analysis

Top Keywords

vaginal mucosa
20
nasal mucosa
12
mucosa
9
characteristics equine
8
equine herpesvirus
8
ehv-1
8
invade lamina
8
lamina propria
8
vaginal
6
ehv-3
5

Similar Publications

Lactic acid in the vaginal milieu modulates the -host interaction.

Virulence

December 2025

Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T he Netherlands.

Vulvovaginal candidiasis (VVC) is one of the most common infections caused by . VVC is characterized by an inadequate hyperinflammatory response and clinical symptoms associated with colonization of the vaginal mucosa. Compared to other host niches in which can cause infection, the vaginal environment is extremely rich in lactic acid that is produced by the vaginal microbiota.

View Article and Find Full Text PDF

Genomic analysis and replication kinetics of the closely related EHV-1 neuropathogenic 21P40 and abortigenic 97P70 strains.

Vet Res

January 2025

Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium.

Varicellovirus equidalpha 1, formerly known as Equid alphaherpesvirus 1 (EHV-1), is highly prevalent and can lead to various problems, such as respiratory problems, abortion, neonatal foal death, and neurological disorders. The latter is known as equine herpes myeloencephalopathy (EHM). Cases of EHM have significantly increased since the beginning of the twenty-first century.

View Article and Find Full Text PDF

Clotrimazole (CLO) is a strong antifungal drug approved to treat vaginal candidiasis (VC). Nanosponges (NSs) were developed to maintain providing CLO in a steady pattern with amplified accumulation in the vaginal mucosa. The quasi-emulsion solvent diffusion method was utilized to prepare NSs.

View Article and Find Full Text PDF

Vaginal Transcriptional Signatures of the Neutrophil-Driven Immune Response Correlate With Clinical Severity During Recurrent Vulvovaginal Candidiasis.

Am J Reprod Immunol

January 2025

Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden.

Problem: Recurrent vulvovaginal candidiasis (RVVC) affects 5%-10% of all women, negatively impacting their reproductive health and quality of life. Herein, we investigated the molecular effects of RVVC on the vaginal mucosa of otherwise healthy women.

Method Of Study: Gene expression analysis was performed on vaginal tissue biopsies from women with RVVC, including those with a current episode of vulvovaginal candidiasis (VVC, n = 19) and women between infections (culture negative RVVC [CNR], n = 8); women asymptomatically colonized with Candida albicans (asymptomatic [AS], n = 7); and healthy controls (n = 18).

View Article and Find Full Text PDF

Vulvo-vaginal-oral lichen planus (VVO-LP) is a chronic inflammatory condition affecting the mucous membranes of the oral cavity, skin, and genital areas. The exact etiology remains unclear, although immune-mediated mechanisms are considered likely contributors. It is a rare form of lichen planus, which typically presents in adults and is more common in middle-aged women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!