Yeast vectors suitable for high-level expression of heterologous proteins should combine a high copy number with a high mitotic stability under non-selective conditions. Since high stability can best be assured by integration of the vector into chromosomal DNA we have set out to design a vector that is able to integrate into the yeast genome in a large number of copies. The rDNA locus appeared to be an attractive target for such multiple integration since it encompasses 100-200 tandemly repeated units. Plasmids containing several kb of rDNA for targeted homologous recombination, as well as the deficient LEU2-d selection marker were constructed and, after transformation into yeast, tested for both copy number and stability. One of these plasmids, designated pMIRY2 (for multiple integration into ribosomal DNA in yeast), was found to be present in 100-200 copies per cell by restriction analysis. The pMIRY2 transformants retained 80-100% of the plasmid copies over a period of 70 generations of growth in batch culture under non-selective conditions. To explore the potential of pMIRY2 as an expression vector we have inserted the homologous genes for phosphoglycerate kinase (PGK) and Mn2+-dependent superoxide dismutase (SOD) as well as the heterologous genes for thaumatin from Thaumatococcus danielli (under the GAPDH promoter), into this plasmid and analyzed the yield of the various proteins. Under optimized conditions the level of PGK in cells transformed with pMIRY2-PGK was about 50% of total soluble protein. The yield of thaumatin in the pMIRY2-thaumatin transformants exceeded by about a factor of 100 the level of thaumatin observed in transformants carrying only a single thaumatin gene integrated at the TRP1 locus in chromosome IV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0378-1119(89)90202-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!