Intersystem crossing in thermally activated delayed fluorescence (TADF) materials is an important process that controls the rate at which singlet states convert to triplets; however, measuring this directly in TADF materials is difficult. TADF is a significant emerging technology that enables the harvesting of triplets as well as singlet excited states for emission in organic light emitting diodes. We have observed the picosecond time-resolved photoluminescence of a highly luminescent, neutral copper(I) complex in the solid state that shows TADF. The time constant of intersystem crossing is measured to be 27 picoseconds. Subsequent overall reverse intersystem crossing is slow, leading to population equilibration and TADF with an average lifetime of 11.5 microseconds. These first measurements of intersystem crossing in the solid state in this class of mononuclear copper(I) complexes give a better understanding of the excited-state processes and mechanisms that ensure efficient TADF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705038 | PMC |
http://dx.doi.org/10.1126/sciadv.1500889 | DOI Listing |
J Phys Chem Lett
December 2024
Molecular Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa Wako, Saitama 351-0198, Japan.
[Pt(NCN)MeCN] (NCN = 1,3-di(2-pyridyl)benzene, MeCN = acetonitrile) forms oligomers in the ground state due to metallophilic interactions, and a Pt-Pt bond is formed with photoexcitation. Ultrafast excited-state dynamics of the [Pt(NCN)MeCN] dimer in acetonitrile is investigated by femtosecond time-resolved absorption (TA) and picosecond emission spectroscopy. The femtosecond TA signals exhibit 60 cm oscillations arising from the Pt-Pt stretching motion in the S dimer.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Physical Chemistry, University of Málaga, Andalucia-Tech Campus de Teatinos s/n 29071 Málaga Spain
The synthesis, electrochemical, spectroelectrochemical, photophysical and light induced electron transfer reactions in two new anthanthrene quinodimethanes have been studied and analyzed in the context of dynamic electrochemistry. Their properties are dependent on the interconversion between folded and twisted forms, which are separated by a relatively small energy range, thus allowing to explore their interconversion by variable temperature measurements. The photophysics of these molecules is mediated by a diradical excited state with a twisted structure that habilitates rapid intersystem crossing.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, U.K.
Activated intramolecular singlet fission is known to occur in the conjugated polymer polythienylene-vinylene (P3TV). Instead, efficient intersystem crossing has been observed in a short 3-alkyl(thienylene-vinylene) dimer. Here, we investigate a series of oligomers covering the conjugation length gap between the dimer and polymer.
View Article and Find Full Text PDFPhotochem Photobiol
December 2024
Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Dindigul, Tamilnadu, India.
Modulating the photophysical properties of photosensitizers is an effective approach to enhance singlet oxygen generation for photodynamic therapy. Porphyrins are the most widely used photosensitizers due to their biocompatible nature. Aggregation-induced emission (AIE) characteristics of photosensitizers are one of the advantageous features that will enhance fluorescence, intersystem crossing, and efficient triplet state generation.
View Article and Find Full Text PDFNano Lett
December 2024
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
Room-temperature phosphorescent (RTP) carbon dots (CDs) demonstrate significant potential applications in the field of information anticounterfeiting due to their excellent optical properties. However, RTP emission of CDs remains significantly limited due to the spin-forbidden properties of triplet exciton transitions. In this work, an in situ nitrogen doping strategy was employed to design and construct strong spin-orbit coupling nitrogen-doped CDs with mesoporous silica with alumina (N-CDs@MS@AlO) RTP composites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!