Draft Genome Sequence of the Biocontrol and Plant Growth-Promoting Rhizobacterium Pseudomonas fluorescens strain UM270.

Stand Genomic Sci

Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán México.

Published: January 2016

AI Article Synopsis

  • The Pseudomonas fluorescens strain UM270 was isolated from the rhizosphere of wild Medicago species and is known for producing compounds that protect and promote plant growth.
  • The draft genome of UM270 consists of about 6 million base pairs, showing a G+C content of 62.66%, and contains predictions for over 5,500 genes, including coding and RNA genes.
  • Analysis of the genome highlights the presence of genes that play roles in biological control and support plant growth, suggesting potential benefits for agricultural practices.

Article Abstract

The Pseudomonas fluorescens strain UM270 was isolated form the rhizosphere of wild Medicago spp. A previous work has shown that this pseudomonad isolate was able to produce diverse diffusible and volatile compounds involved in plant protection and growth promotion. Here, we present the draft genome sequence of the rhizobacterium P. fluorescens strain UM270. The sequence covers 6,047,974 bp of a single chromosome, with 62.66 % G + C content and no plasmids. Genome annotations predicted 5,509 genes, 5,396 coding genes, 59 RNA genes and 110 pseudogenes. Genome sequence analysis revealed the presence of genes involved in biological control and plant-growth promoting activities. We anticipate that the P. fluorescens strain UM270 genome will contribute insights about bacterial plant protection and beneficial properties through genomic comparisons among fluorescent pseudomonads.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4711069PMC
http://dx.doi.org/10.1186/s40793-015-0123-9DOI Listing

Publication Analysis

Top Keywords

fluorescens strain
16
strain um270
16
genome sequence
12
draft genome
8
pseudomonas fluorescens
8
plant protection
8
sequence
4
sequence biocontrol
4
biocontrol plant
4
plant growth-promoting
4

Similar Publications

Fire blight caused by Erwinia amylovora is one of the destructive diseases in the family of Rosaceae plants, including apple and pear, in the world. Since the first report in 2015, the number of infected farms and area steadily increased in Korea. In case of eradication failure against this disease, protection strategies using both chemicals and biocontrol agents should be established.

View Article and Find Full Text PDF

Description of Wickerhamia europaea sp. nov. and revisitation of the ascospore number of W. fluorescens.

Int Microbiol

December 2024

National Collection of Agricultural and Industrial Microorganisms, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói Út 14-16, 1118, Budapest, Hungary.

During the course of two independent studies, six conspecific yeast strains were recovered from flowers, soil, bird faeces and wood of different geographical origins. The six strains share identical DNA sequences in two barcoding regions, the D1/D2 domain of the LSU rRNA gene and the internal transcribed spacer (ITS) region (ITS1-5.8S rRNA gene-ITS2).

View Article and Find Full Text PDF

Pseudomonas fluorescens is commonly found in diverse environments and is well known for its metabolic and antagonistic properties. Despite its remarkable attributes, its potential role in promoting plant growth remains unexplored. This study examines these traits across 14 strains residing in diverse rhizosphere environments through pangenome and comparative genome analysis, alongside molecular docking studies against Erwinia amylovora to combat fire blight.

View Article and Find Full Text PDF

Pyrimidine Nucleotide Biosynthesis and Regulation in Pseudomonas lemonnieri.

Curr Microbiol

November 2024

Department of Chemistry, Texas A&M University, Commerce, TX, 75429, USA.

Article Synopsis
  • The study investigates the regulation of the pyrimidine biosynthetic pathway in Pseudomonas lemonnieri, a bacterium known for producing a commercially valuable blue pigment.
  • It was found that the addition of pyrimidine bases impacted the biosynthetic enzymes differently based on the carbon source, with glucose and succinate yielding varying effects on enzyme activity.
  • A mutant strain was identified that lacked OMP decarboxylase activity and could utilize alternative pyrimidine sources, revealing important insights into the influence of carbon sources on enzyme regulation and the genetic relationships within the Pseudomonas genus.
View Article and Find Full Text PDF

Pseudomonas produce various metabolites displaying herbicide activity against broomrape.

Microbiol Res

January 2025

Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France. Electronic address:

Pseudomonads are well-known for their plant growth-promoting properties and biocontrol capabilities against microbial pathogens. Recently, their potential to protect crops from parasitic plants has garnered attention. This study investigates the potential of different Pseudomonas strains to inhibit broomrape growth and to protect host plants against weed infestation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!