This Letter presents a compact and low-loss 1×2 asymmetrical multimode interference (A-MMI) splitter in rib geometry for on-chip power monitoring at 1.55 μm, where a given alteration of the component cavity determines arbitrary values of the output power splitting ratios. The device shows reduced losses (∼0.4-0.8  dB) and robustness across a 40 nm optical bandwidth (1540-1580 nm).

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.41.000227DOI Listing

Publication Analysis

Top Keywords

compact low-loss
8
asymmetrical multimode
8
multimode interference
8
power monitoring
8
low-loss asymmetrical
4
interference splitter
4
splitter power
4
monitoring applications
4
applications letter
4
letter presents
4

Similar Publications

The ability to perform mathematical computations using metastructures is an emergent paradigm that carries the potential of wave-based analog computing to the realm of near-speed-of-light, low-loss, compact devices. We theoretically introduce and experimentally verify the concept of a reconfigurable metastructure that performs analog complex mathematical computations using electromagnetic waves. Reconfigurable, RF-based components endow our device with the ability to perform stationary and non-stationary iterative algorithms.

View Article and Find Full Text PDF

Polaritons are central to the development of nanophotonics, as they provide mechanisms for manipulating light at the nanoscale. A key advancement has been the demonstration of polariton canalization in which the energy flow is directed along a single direction. An intriguing case is the canalization of ray polaritons, characterized by an enhanced density of optical states.

View Article and Find Full Text PDF
Article Synopsis
  • The proposed hybrid photonic platform combines chalcogenide glass (GeSbSe) with lithium niobate on insulator (LNOI) to enhance performance and compactness for integrated photonic systems.
  • Key components such as grating couplers, micro-ring resonators, multimode interference couplers, and Mach-Zehnder interferometers are designed and fabricated, achieving high quality factors and low propagation losses.
  • This platform's unique optical properties allow for scalable, low-loss integrated photonic circuits, making it suitable for applications in high-speed optical communications and signal processing.
View Article and Find Full Text PDF

Meter-Scale Long Connectorized Paper-like Polymer Waveguide Film for 100 Gbps Board-Level Optical Interconnects Application.

Polymers (Basel)

November 2024

State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China.

We design and fabricate meter-scale long connectorized paper-like flexible multimode polymer waveguide film with a large bandwidth-length product (BLP) for board-level optical interconnects application. The measured BLP of the multimode waveguide is greater than 57.3 GHz·m at a wavelength of 850 nm under the strictest overfilled launch condition with a maximum length of 2.

View Article and Find Full Text PDF

We demonstrate an external cavity laser with intrinsic linewidth below 100 Hz around an operating wavelength of 852 nm, selected for its relevance to laser cooling and manipulation of cesium atoms. This system achieves a maximum CW output power of 24 mW, a wavelength tunability over 10 nm, and a side-mode suppression ratio exceeding 50 dB. This performance level is facilitated by careful design of a low-loss integrated silicon nitride photonic circuit serving as the external cavity combined with commercially available semiconductor gain chips.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!