This Letter presents a compact and low-loss 1×2 asymmetrical multimode interference (A-MMI) splitter in rib geometry for on-chip power monitoring at 1.55 μm, where a given alteration of the component cavity determines arbitrary values of the output power splitting ratios. The device shows reduced losses (∼0.4-0.8 dB) and robustness across a 40 nm optical bandwidth (1540-1580 nm).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.41.000227 | DOI Listing |
Nat Commun
January 2025
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
The ability to perform mathematical computations using metastructures is an emergent paradigm that carries the potential of wave-based analog computing to the realm of near-speed-of-light, low-loss, compact devices. We theoretically introduce and experimentally verify the concept of a reconfigurable metastructure that performs analog complex mathematical computations using electromagnetic waves. Reconfigurable, RF-based components endow our device with the ability to perform stationary and non-stationary iterative algorithms.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, University of Oviedo, Oviedo 33006, Spain.
Polaritons are central to the development of nanophotonics, as they provide mechanisms for manipulating light at the nanoscale. A key advancement has been the demonstration of polariton canalization in which the energy flow is directed along a single direction. An intriguing case is the canalization of ray polaritons, characterized by an enhanced density of optical states.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China.
We design and fabricate meter-scale long connectorized paper-like flexible multimode polymer waveguide film with a large bandwidth-length product (BLP) for board-level optical interconnects application. The measured BLP of the multimode waveguide is greater than 57.3 GHz·m at a wavelength of 850 nm under the strictest overfilled launch condition with a maximum length of 2.
View Article and Find Full Text PDFWe demonstrate an external cavity laser with intrinsic linewidth below 100 Hz around an operating wavelength of 852 nm, selected for its relevance to laser cooling and manipulation of cesium atoms. This system achieves a maximum CW output power of 24 mW, a wavelength tunability over 10 nm, and a side-mode suppression ratio exceeding 50 dB. This performance level is facilitated by careful design of a low-loss integrated silicon nitride photonic circuit serving as the external cavity combined with commercially available semiconductor gain chips.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!