A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Carbon nanotubes implanted manganese-based MOFs for simultaneous detection of biomolecules in body fluids. | LitMetric

Carbon nanotubes implanted manganese-based MOFs for simultaneous detection of biomolecules in body fluids.

Analyst

Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, P.R. China.

Published: February 2016

Metal-organic frameworks (MOFs) have recently attracted much interest in electrochemical fields due to their controlled porosity, large internal surface area, and countless structural topologies. However, the direct application of single component MOFs is limited since they also exhibit poor electronic conductivity, low mechanical stability, and inferior electrocatalytic ability. To overcome these problems, we implanted multi-walled carbon nanotubes (MWCNTs) into manganese-based metal-organic frameworks (Mn-BDC) using a one-step solvothermal method and found that the introduction of MWCNTs can initiate the splitting of bulky Mn-BDC into thin layers. This splitting is highly significant in that it enhances the electronic conductivity and electrocatalytic ability of Mn-BDC. The constructed Mn-BDC@MWCNT composites were utilized as an electrode modifying material in the fabrication of an electrochemical sensor and then were used successfully for the determination of biomolecules in human body fluid. The sensor displayed successful detection performance with wide linear detection ranges (0.1-1150, 0.01-500, and 0.02-1100 μM for AA, DA and UA, respectively) and low limits of detection (0.01, 0.002, and 0.005 μM for AA, DA and UA, respectively); thus, this preliminary study presents an electrochemical biosensor constructed with a novel electrode modifying material that exhibits superior potential for the practical detection of AA, DA and UA in urine samples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5an02441bDOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
8
metal-organic frameworks
8
electronic conductivity
8
electrocatalytic ability
8
electrode modifying
8
modifying material
8
detection
5
nanotubes implanted
4
implanted manganese-based
4
manganese-based mofs
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!