Developing a high-performance photocatalyst and a photoelectrode with enhanced visible light harvesting properties is essential for practical visible light photocatalytic applications. Noble metal-free, highly visible light-active, elemental red phosphorus (RP) was prepared by a facile mechanical ball milling method, which is a reproducible, low cost and controllable synthesis process. The synthesis used inexpensive and abundant raw materials because most RP hybrids are based on expensive noble-metals. The novel milled RP showed significantly enhanced photocatalytic and photoelectrochemical performances with a lower charge transfer resistance compared to commercial RP under wide visible photoirradiation, making it a feasible alternative for photocatalytic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp06796k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!