A novel investigation of the nature of intermittency in incompressible, homogeneous, and isotropic turbulence is performed by a numerical study of the Navier-Stokes equations constrained on a fractal Fourier set. The robustness of the energy transfer and of the vortex stretching mechanisms is tested by changing the fractal dimension D from the original three dimensional case to a strongly decimated system with D=2.5, where only about 3% of the Fourier modes interact. This is a unique methodology to probe the statistical properties of the turbulent energy cascade, without breaking any of the original symmetries of the equations. While the direct energy cascade persists, deviations from the Kolmogorov scaling are observed in the kinetic energy spectra. A model in terms of a correction with a linear dependency on the codimension of the fractal set E(k)∼k(-5/3+3-D) explains the results. At small scales, the intermittency of the vorticity field is observed to be quasisingular as a function of the fractal mode reduction, leading to an almost Gaussian statistics already at D∼2.98. These effects must be connected to a genuine modification in the triad-to-triad nonlinear energy transfer mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.115.264502 | DOI Listing |
Environ Pollut
December 2024
State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China; IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan, 430071, China; Hubei province Key Laboratory of Contaminated Sludge and Soil Science and Engineering, Wuhan, 430071, China.
ACS Appl Mater Interfaces
October 2024
Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada, M5S 3G8.
This study addresses the inherent fragility and fractal limitations of traditional silica aerogels by developing a bio-templated aerogel fiber. Integrating cellulose nanofibers (CNFs), thermoplastic polyurethane (TPU), and silica aerogel (SA) in a dimethyl sulfoxide (DMSO) dispersion, a gel-spinning technique was employed to create aerogel fibers with superior thermomechanical performance. CNF also provided excellent rheological modification for successful spinnability, fast gelation, and fiber formation.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Physical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 6517838683, Iran.
The removal of Sunset Yellow (E110) on natural zeolite and zeolite modified with the cationic surfactant cetyl pyridinium chloride (CPC) was studied using the adsorption method. The structural characteristics of the surfactant-modified zeolite (SMZ-CPC) were investigated using X-ray diffraction(XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) analysis, and the scanning electron microscopy (SEM) images. The effect of different parameters on the adsorption process, such as equilibration time and amount of adsorbent at 298 K, were determined using UV-Vis spectroscopy.
View Article and Find Full Text PDFWater Environ Res
September 2024
College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China.
Attapulgite (ATP) is a biocompatible clay mineral that efficiently absorbs water. It is widely used in water treatment due to its environmental friendliness and cost-effectiveness. This study aimed to develop a volume-expansion structure-based attapulgite flocculant (VES-ATP) using aluminum salt and attapulgite (ATP) under alkaline conditions, specifically for the treatment of water containing low levels of phosphorus.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China; Food Laboratory of Zhongyuan, Luohe 462300, China. Electronic address:
The digestive characteristics of wheat starch are closely related to human health. However, the digestive mechanisms of distinct wheat starch granules are not well understood. To address this problem, A- and B-type wheat starch granules (AWS and BWS, respectively) were digested in vitro and the structural evolution of the digestive remnants was compared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!