We have studied the effects of GH on basal and insulin-stimulated hexose transport by 3T3-F442A adipocytes in a hormonally defined serum-free medium. Adipocytes preincubated in defined medium exhibit a low level of hexose transport which is acutely (15 min) stimulated (greater than 5-fold) by insulin (EC50, 0.1-0.2 nM). GH has acute (15-45 min) insulin-mimetic (greater than 2-fold) and chronic (4-48 h) diabetogenic (50-80%) effects on basal and insulin-stimulated hexose transport. The insulin-mimetic effect of GH has a higher EC50 (2 nM) than its diabetogenic effect (EC50, 0.2 nM). Chronic GH exposure decreases the maximal responsiveness (50-80%) and the acute sensitivity (approximately 2-fold) of hexose transport to insulin. Insulin-stimulated transport is more (approximately 5-fold) sensitive to the diabetogenic effect of GH than is basal transport. Insulin binding and degradation were not altered by chronic exposure to GH. The diabetogenic effect of GH may occur at a postinsulin binding level.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo-125-5-2600DOI Listing

Publication Analysis

Top Keywords

hexose transport
20
transport 3t3-f442a
8
3t3-f442a adipocytes
8
effects basal
8
basal insulin-stimulated
8
insulin-stimulated hexose
8
chronic exposure
8
transport insulin
8
transport
7
hexose
5

Similar Publications

The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined.

View Article and Find Full Text PDF

Sodium glucose co-transporter 2 (SGLT2) inhibitors versus dipeptidyl peptidase-4 (DPP-4) inhibitors and the risk of Atrial Fibrillation in patients with type 2 diabetes mellitus: a meta-analysis.

BMC Cardiovasc Disord

January 2025

The second Affiliated Hospital of Xi'an Jiaotong University, Xinjiang Hospital (People's Hospital of Xinjiang Uygur Autonomous Region, Bainiaohu Hospital), Urumqi, Xinjiang, 830026, People's Republic of China.

Background: Several studies showed higher risks of cardiovascular complications to have been observed in patients with type 2 diabetes mellitus (T2DM). Atrial fibrillation (AF) and atrial flutter have been more pronounced in patients with hyperglycemia. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are now considered as second-line treatment for patients with T2DM following inadequate glycemic control with first line agents.

View Article and Find Full Text PDF

Leptin drives glucose metabolism to promote cardiac protection via OPA1-mediated HDAC5 translocation and Glut4 transcription.

Funct Integr Genomics

January 2025

Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.

Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.

View Article and Find Full Text PDF

Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton-driven symporter, the import of glucose is mediated by an ABC-type transporter, and hence both require energy.

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!