We perform a multifractal analysis of the evolution of London's street network from 1786 to 2010. First, we show that a single fractal dimension, commonly associated with the morphological description of cities, does not suffice to capture the dynamics of the system. Instead, for a proper characterization of such a dynamics, the multifractal spectrum needs to be considered. Our analysis reveals that London evolves from an inhomogeneous fractal structure, which can be described in terms of a multifractal, to a homogeneous one, which converges to monofractality. We argue that London's multifractal to monofractal evolution might be a special outcome of the constraint imposed on its growth by a green belt. Through a series of simulations, we show that multifractal objects, constructed through diffusion limited aggregation, evolve toward monofractality if their growth is constrained by a nonpermeable boundary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.92.062130 | DOI Listing |
Entropy (Basel)
October 2024
Institute of Space Science INFLPR Subsidiary, Atomiștilor 409, 077125 Măgurele, Romania.
PLoS One
June 2024
Department of Physics, Universidad Nacional de Colombia, Bogotá, D.C., Colombia.
Multifractality is a concept that extends locally the usual ideas of fractality in a system. Nevertheless, the multifractal approaches used lack a multifractal dimension tied to an entropy index like the Shannon index. This paper introduces a generalized Shannon index (GSI) and demonstrates its application in understanding system fluctuations.
View Article and Find Full Text PDFPhys Rev Lett
May 2024
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India.
Understanding turbulence rests delicately on the conflict between Kolmogorov's 1941 theory of nonintermittent, space-filling energy dissipation characterized by a unique scaling exponent and the overwhelming evidence to the contrary of intermittency, multiscaling, and multifractality. Strangely, multifractality is not typically envisioned as a local flow property, variations in which might be clues exposing inroads into the fundamental unsolved issues of anomalous dissipation and finite time blowup. We present a simple construction of local multifractality and find that much of the dissipation field remains surprisingly monofractal à la Kolmogorov.
View Article and Find Full Text PDFEur Phys J E Soft Matter
May 2024
Departamento de Física, Universidade Federal Rural de Pernambuco, Rua Manoel de Medeiros, s/n - Dois Irmãos, Recife, 52171-900, Brazil.
In this work, we study the polarization time series obtained from experimental observation of a group of zebrafish (Danio rerio) confined in a circular tank. The complex dynamics of the individual trajectory evolution lead to the appearance of multiple characteristic scales. Employing the Multifractal Detrended Fluctuation Analysis (MF-DFA), we found distinct behaviors according to the parameters used.
View Article and Find Full Text PDFPharmaceuticals (Basel)
April 2024
Department of Medical Oncology-Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Str, 700115 Iasi, Romania.
A unitary model of drug release dynamics is proposed, assuming that the polymer-drug system can be assimilated into a multifractal mathematical object. Then, we made a description of drug release dynamics that implies, via Scale Relativity Theory, the functionality of continuous and undifferentiable curves (fractal or multifractal curves), possibly leading to holographic-like behaviors. At such a conjuncture, the Schrödinger and Madelung multifractal scenarios become compatible: in the Schrödinger multifractal scenario, various modes of drug release can be "mimicked" (via period doubling, damped oscillations, modulated and "chaotic" regimes), while the Madelung multifractal scenario involves multifractal diffusion laws (Fickian and non-Fickian diffusions).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!