Aspects of a new type of laser time-of-flight mass spectrometer are described in this letter. It is based on a wedge-shaped reflecting mirror and is used as an ion analyzer. The analyzer provides time focusing by both energy and a divergence angle of ions. Time focusing of good quality is acquired in the energy range of ±20% of the average ion energy, which is, at least, two times wider than the energy range of the known ion optical systems for similar applications. The mass resolution of the analyzer is ~600, while overall dimensions are very small (10 × 10 × 5 cm).

Download full-text PDF

Source
http://dx.doi.org/10.1255/ejms.1401DOI Listing

Publication Analysis

Top Keywords

laser time-of-flight
8
time-of-flight mass
8
mass spectrometer
8
time focusing
8
energy range
8
letter compact
4
analyzer
4
compact analyzer
4
analyzer laser
4
spectrometer aspects
4

Similar Publications

A comprehensive strategy, including spectroscopic, molecular simulation, proteomics, and bioinformatics techniques, was employed to investigate a novel triazole, 5-(4-methoxyphenyl)-1-phenyl-1H-1,2,3-triazole, its interactions with high-abundance blood proteins, and identification of low-abundance proteins. The binding constants and thermodynamic parameters of the triazole to two high-abundance blood globular proteins, human serum albumin, and human immunoglobulin G (HIgG), were obtained by spectroscopic techniques and computational chemistry. The two-dimensional gel electrophoresis in combination with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed to isolate and identify differentially expressed low-abundance proteins in human blood serum samples following exposure to the triazole.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is widely used across various industries owing to its versatility and favorable properties, including application in beverage bottles, food containers, textile fibers, engineering resins, films, and sheets. However, polymer materials are susceptible to degradation from factors such as light, oxygen, and heat. Therefore, it is crucial to understand the structural changes that occur during degradation and the extent of these changes.

View Article and Find Full Text PDF

sp. nov., isolated from a patient with ruptured appendicitis.

Int J Syst Evol Microbiol

January 2025

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, PR China.

A clinical isolate, R131, was isolated from the peritoneal swab of a patient who suffered from ruptured appendicitis with abscess and gangrene in Hong Kong in 2018. Cells are facultatively anaerobic, non-motile, Gram-positive coccobacilli. Colonies were small, grey, semi-translucent, low convex and alpha-haemolytic.

View Article and Find Full Text PDF

Infant formulas are constantly being updated and upgraded, and N-glycans are functional glycans that have not been fully exploited to date. Commercial whey protein materials are often used as basic ingredients in infant formulas. Therefore, it is important to study N-glycans in commercial whey protein materials.

View Article and Find Full Text PDF

Rapid identification of pathogenic bacteria from clinical positive blood cultures virus-like magnetic bead enrichment and MALDI-TOF MS profiling.

Analyst

January 2025

Institutes of Biomedical Sciences & Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai 200433, China.

Reducing the time required for the detection of bacteria in blood samples is a critical area of investigation in the field of clinical diagnosis. Positive blood culture samples often require a plate culture stage due to the interference of blood cells and proteins, which can result in significant delays before the isolation of single colonies suitable for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. In this study, we developed a non-specific enrichment strategy based on SiO-encapsulated FeO nanoparticles combined with MALDI-TOF MS for direct identification of bacteria from aqueous environments or positive blood culture samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!